BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 22354192)

  • 1. Contribution of cation-π interactions in iminium catalysis.
    Mori Y; Yamada S
    Molecules; 2012 Feb; 17(2):2161-8. PubMed ID: 22354192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of the water molecule on cation-pi interaction: ab initio second order Møller-Plesset perturbation theory (MP2) calculations.
    Xu Y; Shen J; Zhu W; Luo X; Chen K; Jiang H
    J Phys Chem B; 2005 Mar; 109(12):5945-9. PubMed ID: 16851648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enantioselective organocatalytic hydride reduction.
    Ouellet SG; Tuttle JB; MacMillan DW
    J Am Chem Soc; 2005 Jan; 127(1):32-3. PubMed ID: 15631434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of the multipolar electrostatic interaction energy components in strong and weak cation-π interactions.
    Kadlubanski P; Calderón-Mojica K; Rodriguez WA; Majumdar D; Roszak S; Leszczynski J
    J Phys Chem A; 2013 Aug; 117(33):7989-8000. PubMed ID: 23895641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aromatic Interactions in Organocatalyst Design: Augmenting Selectivity Reversal in Iminium Ion Activation.
    Holland MC; Metternich JB; Daniliuc C; Schweizer WB; Gilmour R
    Chemistry; 2015 Jul; 21(28):10031-8. PubMed ID: 25982418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solution phase, solid state, and theoretical investigations on the MacMillan imidazolidinone.
    Brazier JB; Evans G; Gibbs TJ; Coles SJ; Hursthouse MB; Platts JA; Tomkinson NC
    Org Lett; 2009 Jan; 11(1):133-6. PubMed ID: 19061422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The cation-π interaction.
    Dougherty DA
    Acc Chem Res; 2013 Apr; 46(4):885-93. PubMed ID: 23214924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enantioselective organocatalytic cyclopropanations. The identification of a new class of iminium catalyst based upon directed electrostatic activation.
    Kunz RK; MacMillan DW
    J Am Chem Soc; 2005 Mar; 127(10):3240-1. PubMed ID: 15755116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative assessment of substituent effects on cation-π interactions using molecular electrostatic potential topography.
    Sayyed FB; Suresh CH
    J Phys Chem A; 2011 Aug; 115(33):9300-7. PubMed ID: 21774520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substituent effects on the thermodynamic stability of imines formed from glycine and aromatic aldehydes: implications for the catalytic activity of pyridoxal-5'-phosphate.
    Crugeiras J; Rios A; Riveiros E; Richard JP
    J Am Chem Soc; 2009 Nov; 131(43):15815-24. PubMed ID: 19807092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The importance of iminium geometry control in enamine catalysis: identification of a new catalyst architecture for aldehyde-aldehyde couplings.
    Mangion IK; Northrup AB; MacMillan DW
    Angew Chem Int Ed Engl; 2004 Dec; 43(48):6722-4. PubMed ID: 15593153
    [No Abstract]   [Full Text] [Related]  

  • 12. Secondary and primary amine catalysts for iminium catalysis.
    Brazier JB; Tomkinson NC
    Top Curr Chem; 2010; 291():281-347. PubMed ID: 21494953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A computational study of anion-modulated cation-π interactions.
    Carrazana-García JA; Rodríguez-Otero J; Cabaleiro-Lago EM
    J Phys Chem B; 2012 May; 116(20):5860-71. PubMed ID: 22554012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substituent effects in cation/pi interactions and electrostatic potentials above the centers of substituted benzenes are due primarily to through-space effects of the substituents.
    Wheeler SE; Houk KN
    J Am Chem Soc; 2009 Mar; 131(9):3126-7. PubMed ID: 19219986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The marriage of organocatalysis with metal catalysis: access to multisubstituted chiral 2,5-dihydropyrroles by cascade iminium/enamine-metal cooperative catalysis.
    Sun W; Zhu G; Hong L; Wang R
    Chemistry; 2011 Dec; 17(50):13958-62. PubMed ID: 22095848
    [No Abstract]   [Full Text] [Related]  

  • 16. The fluorine-iminium ion gauche effect: proof of principle and application to asymmetric organocatalysis.
    Sparr C; Schweizer WB; Senn HM; Gilmour R
    Angew Chem Int Ed Engl; 2009; 48(17):3065-8. PubMed ID: 19322862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enantioselective α-benzylation of aldehydes via photoredox organocatalysis.
    Shih HW; Vander Wal MN; Grange RL; MacMillan DW
    J Am Chem Soc; 2010 Oct; 132(39):13600-3. PubMed ID: 20831195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical investigations of the H···π and X (X = F, Cl, Br, I)···π complexes between hypohalous acids and benzene.
    Zhao Q; Feng D; Sun Y; Hao J; Cai Z
    J Mol Model; 2011 Aug; 17(8):1935-9. PubMed ID: 21120553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Origin of stereoselectivity in the imidazolidinone-catalyzed reductions of cyclic alpha,beta-unsaturated ketones.
    Gutierrez O; Iafe RG; Houk KN
    Org Lett; 2009 Oct; 11(19):4298-301. PubMed ID: 19722547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Informing Molecular Design by Stereoelectronic Theory: The Fluorine Gauche Effect in Catalysis.
    Aufiero M; Gilmour R
    Acc Chem Res; 2018 Jul; 51(7):1701-1710. PubMed ID: 29894155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.