BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 22354381)

  • 1. Clostridium difficile in piglets in the Czech Republic.
    Goldová J; Malinová A; Indra A; Vítek L; Branny P; Jirásková A
    Folia Microbiol (Praha); 2012 Mar; 57(2):159-61. PubMed ID: 22354381
    [No Abstract]   [Full Text] [Related]  

  • 2. Clostridium difficile PCR ribotype 078: an emerging strain in humans and in pigs?
    Goorhuis A; Debast SB; van Leengoed LA; Harmanus C; Notermans DW; Bergwerff AA; Kuijper EJ
    J Clin Microbiol; 2008 Mar; 46(3):1157; author reply 1158. PubMed ID: 18326836
    [No Abstract]   [Full Text] [Related]  

  • 3. Clostridium difficile toxinotype V, ribotype 078, in animals and humans.
    Rupnik M; Widmer A; Zimmermann O; Eckert C; Barbut F
    J Clin Microbiol; 2008 Jun; 46(6):2146. PubMed ID: 18417662
    [No Abstract]   [Full Text] [Related]  

  • 4. [Prevalence of Clostridium difficile in swine thought to have Clostridium difficile infections (CDI) in eleven swine operations in the netherlands].
    Keessen EC; Leengoed LA; Bakker D; van den Brink KM; Kuijper EJ; Lipman LJ
    Tijdschr Diergeneeskd; 2010 Feb; 135(4):134-7. PubMed ID: 20225480
    [No Abstract]   [Full Text] [Related]  

  • 5. Clostridium difficile and methicillin-resistant Staphylococcus aureus shedding by slaughter-age pigs.
    Weese JS; Rousseau J; Deckert A; Gow S; Reid-Smith RJ
    BMC Vet Res; 2011 Jul; 7():41. PubMed ID: 21791057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epidemic Clostridium difficile ribotype 027 in Chile.
    Hernández-Rocha C; Barra-Carrasco J; Pizarro-Guajardo M; Ibáñez P; Bueno SM; Sarker MR; Guzman AM; Alvarez-Lobos M; Paredes-Sabja D
    Emerg Infect Dis; 2012 Aug; 18(8):1370-2. PubMed ID: 22840230
    [No Abstract]   [Full Text] [Related]  

  • 7. Clostridium difficile isolated from the fecal contents of swine in Japan.
    Asai T; Usui M; Hiki M; Kawanishi M; Nagai H; Sasaki Y
    J Vet Med Sci; 2013 May; 75(4):539-41. PubMed ID: 23171688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel molecular type of Clostridium difficile in neonatal pigs, Western Australia.
    Squire MM; Carter GP; Mackin KE; Chakravorty A; Norén T; Elliott B; Lyras D; Riley TV
    Emerg Infect Dis; 2013 May; 19(5):790-2. PubMed ID: 23697508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Survival and prevalence of Clostridium difficile in manure compost derived from pigs.
    Usui M; Kawakura M; Yoshizawa N; San LL; Nakajima C; Suzuki Y; Tamura Y
    Anaerobe; 2017 Feb; 43():15-20. PubMed ID: 27871997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microarray identification of Clostridium difficile core components and divergent regions associated with host origin.
    Janvilisri T; Scaria J; Thompson AD; Nicholson A; Limbago BM; Arroyo LG; Songer JG; Gröhn YT; Chang YF
    J Bacteriol; 2009 Jun; 191(12):3881-91. PubMed ID: 19376880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neonatal piglet losses associated with Escherichia coli and Clostridium difficile infection in a Slovakian outdoor production unit.
    Nagy J; Bilkei G
    Vet J; 2003 Jul; 166(1):98-100. PubMed ID: 12788023
    [No Abstract]   [Full Text] [Related]  

  • 12. Varied prevalence of Clostridium difficile in an integrated swine operation.
    Norman KN; Harvey RB; Scott HM; Hume ME; Andrews K; Brawley AD
    Anaerobe; 2009 Dec; 15(6):256-60. PubMed ID: 19778624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular analysis of Clostridium difficile strains isolated from 18 cases of recurrent clostridium difficile-associated diarrhea.
    Tang-Feldman Y; Mayo S; Silva J; Cohen SH
    J Clin Microbiol; 2003 Jul; 41(7):3413-4. PubMed ID: 12843107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clostridium difficile in ground meat, France.
    Bouttier S; Barc MC; Felix B; Lambert S; Collignon A; Barbut F
    Emerg Infect Dis; 2010 Apr; 16(4):733-5. PubMed ID: 20350408
    [No Abstract]   [Full Text] [Related]  

  • 15. Prevalence of PCR ribotypes among Clostridium difficile isolates from pigs, calves, and other species.
    Keel K; Brazier JS; Post KW; Weese S; Songer JG
    J Clin Microbiol; 2007 Jun; 45(6):1963-4. PubMed ID: 17428945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid detection of toxigenic strains of Clostridium difficile in diarrheal stools by real-time PCR.
    Barbut F; Braun M; Burghoffer B; Lalande V; Eckert C
    J Clin Microbiol; 2009 Apr; 47(4):1276-7. PubMed ID: 19244461
    [No Abstract]   [Full Text] [Related]  

  • 17. Determination of the extent of Clostridium difficile colonisation and toxin accumulation in sows and neonatal piglets.
    Grześkowiak Ł; Zentek J; Vahjen W
    Anaerobe; 2016 Aug; 40():5-9. PubMed ID: 27108595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acquisition of Clostridium difficile by piglets.
    Hopman NE; Keessen EC; Harmanus C; Sanders IM; van Leengoed LA; Kuijper EJ; Lipman LJ
    Vet Microbiol; 2011 Apr; 149(1-2):186-92. PubMed ID: 21111541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zoonotic potential of the Clostridium difficile RT078 family in Taiwan.
    Tsai BY; Ko WC; Chen TH; Wu YC; Lan PH; Chen YH; Hung YP; Tsai PJ
    Anaerobe; 2016 Oct; 41():125-130. PubMed ID: 27292030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emergence of Clostridium difficile NAP1 in Latin America.
    Quesada-Gómez C; Rodríguez C; Gamboa-Coronado Mdel M; Rodríguez-Cavallini E; Du T; Mulvey MR; Villalobos-Zúñiga M; Boza-Cordero R
    J Clin Microbiol; 2010 Feb; 48(2):669-70. PubMed ID: 19940046
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.