These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 22354383)
1. Modeling hemodynamics in an unoccluded and partially occluded inferior vena cava under rest and exercise conditions. Ren Z; Wang SL; Singer MA Med Biol Eng Comput; 2012 Mar; 50(3):277-87. PubMed ID: 22354383 [TBL] [Abstract][Full Text] [Related]
2. Computational modeling of blood flow in the TrapEase inferior vena cava filter. Singer MA; Henshaw WD; Wang SL J Vasc Interv Radiol; 2009 Jun; 20(6):799-805. PubMed ID: 19406666 [TBL] [Abstract][Full Text] [Related]
3. An experimental and computational study of the inferior vena cava hemodynamics under respiratory-induced collapse of the infrarenal IVC. Tedaldi E; Montanari C; Aycock KI; Sturla F; Redaelli A; Manning KB Med Eng Phys; 2018 Apr; 54():44-55. PubMed ID: 29487036 [TBL] [Abstract][Full Text] [Related]
4. The Importance of Hemorheology and Patient Anatomy on the Hemodynamics in the Inferior Vena Cava. Aycock KI; Campbell RL; Lynch FC; Manning KB; Craven BA Ann Biomed Eng; 2016 Dec; 44(12):3568-3582. PubMed ID: 27272211 [TBL] [Abstract][Full Text] [Related]
5. In vitro hemodynamic evaluation of a Simon nitinol vena cava filter: possible explanation of IVC occlusion. Leask RL; Johnston KW; Ojha M J Vasc Interv Radiol; 2001 May; 12(5):613-8. PubMed ID: 11340141 [TBL] [Abstract][Full Text] [Related]
6. In vitro assessment of the hemodynamic effects of a partial occlusion in a vena cava filter. Couch GG; Kim H; Ojha M J Vasc Surg; 1997 Apr; 25(4):663-72. PubMed ID: 9129622 [TBL] [Abstract][Full Text] [Related]
7. Numerical analysis of the hemodynamics and embolus capture of a greenfield vena cava filter. Swaminathan TN; Hu HH; Patel AA J Biomech Eng; 2006 Jun; 128(3):360-70. PubMed ID: 16706585 [TBL] [Abstract][Full Text] [Related]
8. Steady Flow in a Patient-Averaged Inferior Vena Cava-Part II: Computational Fluid Dynamics Verification and Validation. Craven BA; Aycock KI; Manning KB Cardiovasc Eng Technol; 2018 Dec; 9(4):654-673. PubMed ID: 30446978 [TBL] [Abstract][Full Text] [Related]
9. Modeling blood flow in a tilted inferior vena cava filter: does tilt adversely affect hemodynamics? Singer MA; Wang SL J Vasc Interv Radiol; 2011 Feb; 22(2):229-35. PubMed ID: 21211992 [TBL] [Abstract][Full Text] [Related]
10. Effects of thrombosed vena cava filters on blood flow: flow visualization and numerical modeling. Stewart SF; Robinson RA; Nelson RA; Malinauskas RA Ann Biomed Eng; 2008 Nov; 36(11):1764-81. PubMed ID: 18787955 [TBL] [Abstract][Full Text] [Related]
11. Hemodynamic effects of blood clots trapped by an inferior vena cava filter. López JM; Fortuny G; Puigjaner D; Herrero J; Marimon F Int J Numer Method Biomed Eng; 2020 Jul; 36(7):e3343. PubMed ID: 32323487 [TBL] [Abstract][Full Text] [Related]
12. Steady Flow in a Patient-Averaged Inferior Vena Cava-Part I: Particle Image Velocimetry Measurements at Rest and Exercise Conditions. Gallagher MB; Aycock KI; Craven BA; Manning KB Cardiovasc Eng Technol; 2018 Dec; 9(4):641-653. PubMed ID: 30411228 [TBL] [Abstract][Full Text] [Related]
13. Design optimization of vena cava filters: an application to dual filtration devices. Singer MA; Wang SL; Diachin DP J Biomech Eng; 2010 Oct; 132(10):101006. PubMed ID: 20887016 [TBL] [Abstract][Full Text] [Related]
14. Vena cava filter performance based on hemodynamics and reported thrombosis and pulmonary embolism patterns. Harlal A; Ojha M; Johnston KW J Vasc Interv Radiol; 2007 Jan; 18(1 Pt 1):103-15. PubMed ID: 17296710 [TBL] [Abstract][Full Text] [Related]
15. Three-dimensional analysis of flow disturbances caused by clots in inferior vena cava filters. Rahbar E; Mori D; Moore JE J Vasc Interv Radiol; 2011 Jun; 22(6):835-42. PubMed ID: 21414805 [TBL] [Abstract][Full Text] [Related]
16. Hemodynamic effects of clot entrapment in the TrapEase inferior vena cava filter. Leask RL; Johnston KW; Ojha M J Vasc Interv Radiol; 2004 May; 15(5):485-90. PubMed ID: 15126659 [TBL] [Abstract][Full Text] [Related]
17. Toward an optimal position for inferior vena cava filters: computational modeling of the impact of renal vein inflow with Celect and TrapEase filters. Wang SL; Singer MA J Vasc Interv Radiol; 2010 Mar; 21(3):367-74; quiz 374. PubMed ID: 20171559 [TBL] [Abstract][Full Text] [Related]
18. A computational method for predicting inferior vena cava filter performance on a patient-specific basis. Aycock KI; Campbell RL; Manning KB; Sastry SP; Shontz SM; Lynch FC; Craven BA J Biomech Eng; 2014 Aug; 136(8):. PubMed ID: 24805200 [TBL] [Abstract][Full Text] [Related]
19. Improvement of hemodynamic performance using novel helical flow vena cava filter design. Chen Y; Zhang P; Deng X; Fan Y; Xing Y; Xing N Sci Rep; 2017 Jan; 7():40724. PubMed ID: 28112186 [TBL] [Abstract][Full Text] [Related]
20. An in vitro comparison of the hemodynamics of two inferior vena cava filters. Couch GG; Johnston KW; Ojha M J Vasc Surg; 2000 Mar; 31(3):539-49. PubMed ID: 10709068 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]