These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
260 related articles for article (PubMed ID: 22354431)
1. Darwinian evolution of an alternative genetic system provides support for TNA as an RNA progenitor. Yu H; Zhang S; Chaput JC Nat Chem; 2012 Jan; 4(3):183-7. PubMed ID: 22354431 [TBL] [Abstract][Full Text] [Related]
2. An in vitro selection system for TNA. Ichida JK; Zou K; Horhota A; Yu B; McLaughlin LW; Szostak JW J Am Chem Soc; 2005 Mar; 127(9):2802-3. PubMed ID: 15740086 [TBL] [Abstract][Full Text] [Related]
3. Experimental evidence that GNA and TNA were not sequential polymers in the prebiotic evolution of RNA. Yang YW; Zhang S; McCullum EO; Chaput JC J Mol Evol; 2007 Sep; 65(3):289-95. PubMed ID: 17828568 [TBL] [Abstract][Full Text] [Related]
4. A Nucleic Acid Sequence That is Catalytically Active in Both RNA and TNA Backbones. Wei D; Wang Y; Song D; Zhang Z; Wang J; Chen JY; Li Z; Yu H ACS Synth Biol; 2022 Nov; 11(11):3874-3885. PubMed ID: 36278399 [TBL] [Abstract][Full Text] [Related]
5. Structural Insights into Conformation Differences between DNA/TNA and RNA/TNA Chimeric Duplexes. Anosova I; Kowal EA; Sisco NJ; Sau S; Liao JY; Bala S; Rozners E; Egli M; Chaput JC; Van Horn WD Chembiochem; 2016 Sep; 17(18):1705-8. PubMed ID: 27347671 [TBL] [Abstract][Full Text] [Related]
6. In Vitro Selection of an ATP-Binding TNA Aptamer. Zhang L; Chaput JC Molecules; 2020 Sep; 25(18):. PubMed ID: 32933142 [TBL] [Abstract][Full Text] [Related]
7. An In Vitro Selection Protocol for Threose Nucleic Acid (TNA) Using DNA Display. Dunn MR; Chaput JC Curr Protoc Nucleic Acid Chem; 2014 Jun; 57():9.8.1-19. PubMed ID: 24961723 [TBL] [Abstract][Full Text] [Related]
8. DNA polymerase-mediated DNA synthesis on a TNA template. Chaput JC; Ichida JK; Szostak JW J Am Chem Soc; 2003 Jan; 125(4):856-7. PubMed ID: 12537469 [TBL] [Abstract][Full Text] [Related]
9. A Threose Nucleic Acid Enzyme with RNA Ligase Activity. Wang Y; Wang Y; Song D; Sun X; Zhang Z; Li X; Li Z; Yu H J Am Chem Soc; 2021 Jun; 143(21):8154-8163. PubMed ID: 34028252 [TBL] [Abstract][Full Text] [Related]
10. Threose nucleic acid as a primitive genetic polymer and a contemporary molecular tool. Wang J; Yu H Bioorg Chem; 2024 Feb; 143():107049. PubMed ID: 38150936 [TBL] [Abstract][Full Text] [Related]
11. In vitro selection of an XNA aptamer capable of small-molecule recognition. Rangel AE; Chen Z; Ayele TM; Heemstra JM Nucleic Acids Res; 2018 Sep; 46(16):8057-8068. PubMed ID: 30085205 [TBL] [Abstract][Full Text] [Related]
12. TNA synthesis by DNA polymerases. Chaput JC; Szostak JW J Am Chem Soc; 2003 Aug; 125(31):9274-5. PubMed ID: 12889939 [TBL] [Abstract][Full Text] [Related]
13. DNA polymerase-mediated synthesis of unbiased threose nucleic acid (TNA) polymers requires 7-deazaguanine to suppress G:G mispairing during TNA transcription. Dunn MR; Larsen AC; Zahurancik WJ; Fahmi NE; Meyers M; Suo Z; Chaput JC J Am Chem Soc; 2015 Apr; 137(12):4014-7. PubMed ID: 25785966 [TBL] [Abstract][Full Text] [Related]
14. Synthesis and nonenzymatic template-directed polymerization of 2'-amino-2'-deoxythreose nucleotides. Blain JC; Ricardo A; Szostak JW J Am Chem Soc; 2014 Feb; 136(5):2033-9. PubMed ID: 24409991 [TBL] [Abstract][Full Text] [Related]
15. Synthesis of a Fluorescent Cytidine TNA Triphosphate Analogue. Mei H; Chaput J Methods Mol Biol; 2019; 1973():27-37. PubMed ID: 31016694 [TBL] [Abstract][Full Text] [Related]
16. Versatility of threose nucleic acids: synthesis, properties, and applications in chemical biology and biomedical advancements. Tam DY; Li P; Liu LS; Wang F; Leung HM; Lo PK Chem Commun (Camb); 2024 Oct; 60(83):11864-11889. PubMed ID: 39318271 [TBL] [Abstract][Full Text] [Related]
18. Synthesis and polymerase activity of a fluorescent cytidine TNA triphosphate analogue. Mei H; Shi C; Jimenez RM; Wang Y; Kardouh M; Chaput JC Nucleic Acids Res; 2017 Jun; 45(10):5629-5638. PubMed ID: 28472363 [TBL] [Abstract][Full Text] [Related]
19. α-l-Threose Nucleic Acids as Biocompatible Antisense Oligonucleotides for Suppressing Gene Expression in Living Cells. Liu LS; Leung HM; Tam DY; Lo TW; Wong SW; Lo PK ACS Appl Mater Interfaces; 2018 Mar; 10(11):9736-9743. PubMed ID: 29473733 [TBL] [Abstract][Full Text] [Related]