These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

588 related articles for article (PubMed ID: 22354535)

  • 1. Charge injection in solution-processed organic field-effect transistors: physics, models and characterization methods.
    Natali D; Caironi M
    Adv Mater; 2012 Mar; 24(11):1357-87. PubMed ID: 22354535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functionalized Organic Thin Film Transistors for Biosensing.
    Wang N; Yang A; Fu Y; Li Y; Yan F
    Acc Chem Res; 2019 Feb; 52(2):277-287. PubMed ID: 30620566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward printed integrated circuits based on unipolar or ambipolar polymer semiconductors.
    Baeg KJ; Caironi M; Noh YY
    Adv Mater; 2013 Aug; 25(31):4210-44. PubMed ID: 23761043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simple and robust approach to reducing contact resistance in organic transistors.
    Lamport ZA; Barth KJ; Lee H; Gann E; Engmann S; Chen H; Guthold M; McCulloch I; Anthony JE; Richter LJ; DeLongchamp DM; Jurchescu OD
    Nat Commun; 2018 Dec; 9(1):5130. PubMed ID: 30510263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Purity Semiconducting Single-Walled Carbon Nanotubes: A Key Enabling Material in Emerging Electronics.
    Lefebvre J; Ding J; Li Z; Finnie P; Lopinski G; Malenfant PRL
    Acc Chem Res; 2017 Oct; 50(10):2479-2486. PubMed ID: 28902990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organic metal engineering for enhanced field-effect transistor performance.
    Pfattner R; Rovira C; Mas-Torrent M
    Phys Chem Chem Phys; 2015 Oct; 17(40):26545-52. PubMed ID: 25204256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning the threshold voltage in electrolyte-gated organic field-effect transistors.
    Kergoat L; Herlogsson L; Piro B; Pham MC; Horowitz G; Crispin X; Berggren M
    Proc Natl Acad Sci U S A; 2012 May; 109(22):8394-9. PubMed ID: 22586088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultra-high gain diffusion-driven organic transistor.
    Torricelli F; Colalongo L; Raiteri D; Kovács-Vajna ZM; Cantatore E
    Nat Commun; 2016 Feb; 7():10550. PubMed ID: 26829567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Charge injection engineering of ambipolar field-effect transistors for high-performance organic complementary circuits.
    Baeg KJ; Kim J; Khim D; Caironi M; Kim DY; You IK; Quinn JR; Facchetti A; Noh YY
    ACS Appl Mater Interfaces; 2011 Aug; 3(8):3205-14. PubMed ID: 21805991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advances in organic transistor-based biosensors: from organic electrochemical transistors to electrolyte-gated organic field-effect transistors.
    Kergoat L; Piro B; Berggren M; Horowitz G; Pham MC
    Anal Bioanal Chem; 2012 Feb; 402(5):1813-26. PubMed ID: 21910013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A stable solution-processed polymer semiconductor with record high-mobility for printed transistors.
    Li J; Zhao Y; Tan HS; Guo Y; Di CA; Yu G; Liu Y; Lin M; Lim SH; Zhou Y; Su H; Ong BS
    Sci Rep; 2012; 2():754. PubMed ID: 23082244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inkjet printed, high mobility inorganic-oxide field effect transistors processed at room temperature.
    Dasgupta S; Kruk R; Mechau N; Hahn H
    ACS Nano; 2011 Dec; 5(12):9628-38. PubMed ID: 22077094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrahigh-Mobility and Solution-Processed Inorganic P-Channel Thin-Film Transistors Based on a Transition-Metal Halide Semiconductor.
    Lee HJ; Lee S; Ji Y; Cho KG; Choi KS; Jeon C; Lee KH; Hong K
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):40243-40251. PubMed ID: 31592635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mobility overestimation due to gated contacts in organic field-effect transistors.
    Bittle EG; Basham JI; Jackson TN; Jurchescu OD; Gundlach DJ
    Nat Commun; 2016 Mar; 7():10908. PubMed ID: 26961271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoscale organic and polymeric field-effect transistors as chemical sensors.
    Wang L; Fine D; Sharma D; Torsi L; Dodabalapur A
    Anal Bioanal Chem; 2006 Jan; 384(2):310-21. PubMed ID: 16315016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. n-Channel semiconductor materials design for organic complementary circuits.
    Usta H; Facchetti A; Marks TJ
    Acc Chem Res; 2011 Jul; 44(7):501-10. PubMed ID: 21615105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Critical Outlook for the Pursuit of Lower Contact Resistance in Organic Transistors.
    Borchert JW; Weitz RT; Ludwigs S; Klauk H
    Adv Mater; 2022 Jan; 34(2):e2104075. PubMed ID: 34623710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solution-processed field-effect transistors based on dihexylquaterthiophene films with performances exceeding those of vacuum-sublimed films.
    Leydecker T; Trong Duong D; Salleo A; Orgiu E; Samorì P
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):21248-55. PubMed ID: 25380324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon nanotube electrodes in organic transistors.
    Valitova I; Amato M; Mahvash F; Cantele G; Maffucci A; Santato C; Martel R; Cicoira F
    Nanoscale; 2013 Jun; 5(11):4638-46. PubMed ID: 23639944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enabling Multifunctional Organic Transistors with Fine-Tuned Charge Transport.
    Di CA; Shen H; Zhang F; Zhu D
    Acc Chem Res; 2019 Apr; 52(4):1113-1124. PubMed ID: 30908012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.