BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 22354786)

  • 1. Synthesis of monodisperse, covalently cross-linked, degradable "smart" microgels using microfluidics.
    Kesselman LR; Shinwary S; Selvaganapathy PR; Hoare T
    Small; 2012 Apr; 8(7):1092-8. PubMed ID: 22354786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic production of degradable thermoresponsive poly(N-isopropylacrylamide)-based microgels.
    Sivakumaran D; Mueller E; Hoare T
    Soft Matter; 2017 Dec; 13(47):9060-9070. PubMed ID: 29177347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic production of biopolymer microcapsules with controlled morphology.
    Zhang H; Tumarkin E; Peerani R; Nie Z; Sullan RM; Walker GC; Kumacheva E
    J Am Chem Soc; 2006 Sep; 128(37):12205-10. PubMed ID: 16967971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring a direct injection method for microfluidic generation of polymer microgels.
    Wang Y; Tumarkin E; Velasco D; Abolhasani M; Lau W; Kumacheva E
    Lab Chip; 2013 Jul; 13(13):2547-53. PubMed ID: 23407698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic synthesis of pharmacologically responsive supramolecular biohybrid microgels.
    Hövermann D; Rossow T; Gübeli RJ; Seiffert S; Weber W
    Macromol Biosci; 2014 Dec; 14(12):1730-4. PubMed ID: 25185774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature-Induced Assembly of Monodisperse, Covalently Cross-Linked, and Degradable Poly(N-isopropylacrylamide) Microgels Based on Oligomeric Precursors.
    Sivakumaran D; Mueller E; Hoare T
    Langmuir; 2015 Jun; 31(21):5767-78. PubMed ID: 25977976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional microgels tailored by droplet-based microfluidics.
    Seiffert S
    Macromol Rapid Commun; 2011 Oct; 32(20):1600-9. PubMed ID: 21793090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of pH-degradable supramacromolecular microgels with tunable size and shape via droplet-based microfluidics.
    Jung SH; Bulut S; Busca Guerzoni LPB; Günther D; Braun S; De Laporte L; Pich A
    J Colloid Interface Sci; 2022 Jul; 617():409-421. PubMed ID: 35279576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabricating Degradable Thermoresponsive Hydrogels on Multiple Length Scales via Reactive Extrusion, Microfluidics, Self-assembly, and Electrospinning.
    Sivakumaran D; Bakaic E; Campbell SB; Xu F; Mueller E; Hoare T
    J Vis Exp; 2018 Apr; (134):. PubMed ID: 29708523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of antibody-loaded microgels using microfluidics and thiol-ene photoclick chemistry.
    Gregoritza M; Abstiens K; Graf M; Goepferich AM
    Eur J Pharm Biopharm; 2018 Jun; 127():194-203. PubMed ID: 29471077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Janus microgels produced from functional precursor polymers.
    Seiffert S; Romanowsky MB; Weitz DA
    Langmuir; 2010 Sep; 26(18):14842-7. PubMed ID: 20731338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of monodisperse alginate microbeads and in situ encapsulation of cell in microfluidic device.
    Choi CH; Jung JH; Rhee YW; Kim DP; Shim SE; Lee CS
    Biomed Microdevices; 2007 Dec; 9(6):855-62. PubMed ID: 17578667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing the biocompatibility of microfluidics-assisted fabrication of cell-laden microgels with channel geometry.
    Kim S; Oh J; Cha C
    Colloids Surf B Biointerfaces; 2016 Nov; 147():1-8. PubMed ID: 27478957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Processing of fast-gelling hydrogel precursors in microfluidics by electrocoalescence of reactive species.
    Hauck N; Neuendorf TA; Männel MJ; Vogel L; Liu P; Stündel E; Zhang Y; Thiele J
    Soft Matter; 2021 Nov; 17(45):10312-10321. PubMed ID: 34664052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Injectable microgel-hydrogel composites for prolonged small-molecule drug delivery.
    Sivakumaran D; Maitland D; Hoare T
    Biomacromolecules; 2011 Nov; 12(11):4112-20. PubMed ID: 22007750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlled synthesis of cell-laden microgels by radical-free gelation in droplet microfluidics.
    Rossow T; Heyman JA; Ehrlicher AJ; Langhoff A; Weitz DA; Haag R; Seiffert S
    J Am Chem Soc; 2012 Mar; 134(10):4983-9. PubMed ID: 22356466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hyaluronic acid-based microgels and microgel networks for vocal fold regeneration.
    Jia X; Yeo Y; Clifton RJ; Jiao T; Kohane DS; Kobler JB; Zeitels SM; Langer R
    Biomacromolecules; 2006 Dec; 7(12):3336-44. PubMed ID: 17154461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic Templated Multicompartment Microgels for 3D Encapsulation and Pairing of Single Cells.
    Zhang L; Chen K; Zhang H; Pang B; Choi CH; Mao AS; Liao H; Utech S; Mooney DJ; Wang H; Weitz DA
    Small; 2018 Mar; 14(9):. PubMed ID: 29334173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic generation of composite biopolymer microgels with tunable compositions and mechanical properties.
    Chau M; Abolhasani M; Thérien-Aubin H; Li Y; Wang Y; Velasco D; Tumarkin E; Ramachandran A; Kumacheva E
    Biomacromolecules; 2014 Jul; 15(7):2419-25. PubMed ID: 24931723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of thermosensitive microgels via suspension polymerization using different temperature protocols.
    Zhang Y; Zhu W; Ding J
    J Biomed Mater Res A; 2005 Nov; 75(2):342-9. PubMed ID: 16082695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.