These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 22354790)
1. A new piece in the puzzle of lithium/air batteries: computational study on the chemical stability of propylene carbonate in the presence of lithium peroxide. Laino T; Curioni A Chemistry; 2012 Mar; 18(12):3510-20. PubMed ID: 22354790 [TBL] [Abstract][Full Text] [Related]
4. Effects of Propylene Carbonate Content in CsPF₆-Containing Electrolytes on the Enhanced Performances of Graphite Electrode for Lithium-Ion Batteries. Zheng J; Yan P; Cao R; Xiang H; Engelhard MH; Polzin BJ; Wang C; Zhang JG; Xu W ACS Appl Mater Interfaces; 2016 Mar; 8(8):5715-22. PubMed ID: 26862677 [TBL] [Abstract][Full Text] [Related]
5. O2 reduction by lithium on Au(111) and Pt(111). Xu Y; Shelton WA J Chem Phys; 2010 Jul; 133(2):024703. PubMed ID: 20632766 [TBL] [Abstract][Full Text] [Related]
7. Mechanistic Insight into the Superoxide Induced Ring Opening in Propylene Carbonate Based Electrolytes using in Situ Surface-Enhanced Infrared Spectroscopy. Vivek JP; Berry N; Papageorgiou G; Nichols RJ; Hardwick LJ J Am Chem Soc; 2016 Mar; 138(11):3745-51. PubMed ID: 26909538 [TBL] [Abstract][Full Text] [Related]
8. Operando observation of the gold-electrolyte interface in Li-O2 batteries. Gittleson FS; Ryu WH; Taylor AD ACS Appl Mater Interfaces; 2014 Nov; 6(21):19017-25. PubMed ID: 25318060 [TBL] [Abstract][Full Text] [Related]
9. Magnetism in lithium-oxygen discharge product. Lu J; Jung HJ; Lau KC; Zhang Z; Schlueter JA; Du P; Assary RS; Greeley J; Ferguson GA; Wang HH; Hassoun J; Iddir H; Zhou J; Zuin L; Hu Y; Sun YK; Scrosati B; Curtiss LA; Amine K ChemSusChem; 2013 Jul; 6(7):1196-202. PubMed ID: 23670967 [TBL] [Abstract][Full Text] [Related]
10. Lithium peroxide surfaces are metallic, while lithium oxide surfaces are not. Radin MD; Rodriguez JF; Tian F; Siegel DJ J Am Chem Soc; 2012 Jan; 134(2):1093-103. PubMed ID: 22148314 [TBL] [Abstract][Full Text] [Related]
11. Surface characterization of the carbon cathode and the lithium anode of Li-O₂ batteries using LiClO₄ or LiBOB salts. Younesi R; Hahlin M; Edström K ACS Appl Mater Interfaces; 2013 Feb; 5(4):1333-41. PubMed ID: 23336349 [TBL] [Abstract][Full Text] [Related]
12. Influence of adsorbed polar molecules on the electronic transport in a composite material Li(1.1)V3O8-PMMA for lithium batteries. Badot JC; Ligneel E; Dubrunfaut O; Gaubicher J; Guyomard D; Lestriez B Phys Chem Chem Phys; 2012 Jul; 14(26):9500-10. PubMed ID: 22652605 [TBL] [Abstract][Full Text] [Related]
13. The stability of the SEI layer, surface composition and the oxidation state of transition metals at the electrolyte-cathode interface impacted by the electrochemical cycling: X-ray photoelectron spectroscopy investigation. Cherkashinin G; Nikolowski K; Ehrenberg H; Jacke S; Dimesso L; Jaegermann W Phys Chem Chem Phys; 2012 Sep; 14(35):12321-31. PubMed ID: 22858824 [TBL] [Abstract][Full Text] [Related]
14. Theoretical insight into oxidative decomposition of propylene carbonate in the lithium ion battery. Xing L; Wang C; Li W; Xu M; Meng X; Zhao S J Phys Chem B; 2009 Apr; 113(15):5181-7. PubMed ID: 19354305 [TBL] [Abstract][Full Text] [Related]
15. Initial solid electrolyte interphase formation process of graphite anode in LiPF6 electrolyte: an in situ ECSTM investigation. Wang L; Deng X; Dai PX; Guo YG; Wang D; Wan LJ Phys Chem Chem Phys; 2012 May; 14(20):7330-6. PubMed ID: 22526455 [TBL] [Abstract][Full Text] [Related]
17. Solid electrolyte interphase formation by propylene carbonate reduction for lithium anode. Qian Q; Yang Y; Shao H Phys Chem Chem Phys; 2017 Nov; 19(42):28772-28780. PubMed ID: 29048094 [TBL] [Abstract][Full Text] [Related]
18. Oxidative decomposition of propylene carbonate in lithium ion batteries: a DFT study. Leggesse EG; Lin RT; Teng TF; Chen CL; Jiang JC J Phys Chem A; 2013 Aug; 117(33):7959-69. PubMed ID: 23875958 [TBL] [Abstract][Full Text] [Related]
19. The effect of oxygen crossover on the anode of a Li-O(2) battery using an ether-based solvent: insights from experimental and computational studies. Assary RS; Lu J; Du P; Luo X; Zhang X; Ren Y; Curtiss LA; Amine K ChemSusChem; 2013 Jan; 6(1):51-5. PubMed ID: 23208891 [TBL] [Abstract][Full Text] [Related]
20. Accurate static and dynamic properties of liquid electrolytes for Li-ion batteries from ab initio molecular dynamics. Ganesh P; Jiang DE; Kent PR J Phys Chem B; 2011 Mar; 115(12):3085-90. PubMed ID: 21384941 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]