These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 22354790)
21. Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo(1/3)Ni(1/3)Mn(1/3)O2. Yabuuchi N; Yoshii K; Myung ST; Nakai I; Komaba S J Am Chem Soc; 2011 Mar; 133(12):4404-19. PubMed ID: 21375288 [TBL] [Abstract][Full Text] [Related]
22. Compatibility of lithium salts with solvent of the non-aqueous electrolyte in Li-O2 batteries. Du P; Lu J; Lau KC; Luo X; Bareño J; Zhang X; Ren Y; Zhang Z; Curtiss LA; Sun YK; Amine K Phys Chem Chem Phys; 2013 Apr; 15(15):5572-81. PubMed ID: 23463031 [TBL] [Abstract][Full Text] [Related]
23. A density functional theory based study of the electron transfer reaction at the cathode-electrolyte interface in lithium-air batteries. Kazemiabnavi S; Dutta P; Banerjee S Phys Chem Chem Phys; 2015 May; 17(17):11740-51. PubMed ID: 25868477 [TBL] [Abstract][Full Text] [Related]
24. Solvent decompositions and physical properties of decomposition compounds in Li-ion battery electrolytes studied by DFT calculations and molecular dynamics simulations. Tasaki K J Phys Chem B; 2005 Feb; 109(7):2920-33. PubMed ID: 16851305 [TBL] [Abstract][Full Text] [Related]
25. Positive role of surface defects on carbon nanotube cathodes in overpotential and capacity retention of rechargeable lithium-oxygen batteries. Huang S; Fan W; Guo X; Meng F; Liu X ACS Appl Mater Interfaces; 2014 Dec; 6(23):21567-75. PubMed ID: 25397991 [TBL] [Abstract][Full Text] [Related]
26. Fluoroethylene carbonate as an important component in electrolyte solutions for high-voltage lithium batteries: role of surface chemistry on the cathode. Markevich E; Salitra G; Fridman K; Sharabi R; Gershinsky G; Garsuch A; Semrau G; Schmidt MA; Aurbach D Langmuir; 2014 Jul; 30(25):7414-24. PubMed ID: 24885475 [TBL] [Abstract][Full Text] [Related]
28. Nanostructured Metal Carbides for Aprotic Li-O2 Batteries: New Insights into Interfacial Reactions and Cathode Stability. Kundu D; Black R; Adams B; Harrison K; Zavadil K; Nazar LF J Phys Chem Lett; 2015 Jun; 6(12):2252-8. PubMed ID: 26266600 [TBL] [Abstract][Full Text] [Related]
29. X-Ray absorption spectroscopy of LiBF4 in propylene carbonate: a model lithium ion battery electrolyte. Smith JW; Lam RK; Sheardy AT; Shih O; Rizzuto AM; Borodin O; Harris SJ; Prendergast D; Saykally RJ Phys Chem Chem Phys; 2014 Nov; 16(43):23568-75. PubMed ID: 25175723 [TBL] [Abstract][Full Text] [Related]
30. Two-cation competition in ionic-liquid-modified electrolytes for lithium ion batteries. Lee SY; Yong HH; Lee YJ; Kim SK; Ahn S J Phys Chem B; 2005 Jul; 109(28):13663-7. PubMed ID: 16852712 [TBL] [Abstract][Full Text] [Related]
31. Mechanism of lithium storage in MoS2 and the feasibility of using Li2S/Mo nanocomposites as cathode materials for lithium-sulfur batteries. Fang X; Guo X; Mao Y; Hua C; Shen L; Hu Y; Wang Z; Wu F; Chen L Chem Asian J; 2012 May; 7(5):1013-7. PubMed ID: 22374889 [TBL] [Abstract][Full Text] [Related]
32. Reactions in the rechargeable lithium-O2 battery with alkyl carbonate electrolytes. Freunberger SA; Chen Y; Peng Z; Griffin JM; Hardwick LJ; Bardé F; Novák P; Bruce PG J Am Chem Soc; 2011 May; 133(20):8040-7. PubMed ID: 21524112 [TBL] [Abstract][Full Text] [Related]
33. Molecular-level insights into the reactivity of siloxane-based electrolytes at a lithium-metal anode. Assary RS; Lu J; Luo X; Zhang X; Ren Y; Wu H; Albishri HM; El-Hady DA; Al-Bogami AS; Curtiss LA; Amine K Chemphyschem; 2014 Jul; 15(10):2077-83. PubMed ID: 24986260 [TBL] [Abstract][Full Text] [Related]
34. Evidence for lithium superoxide-like species in the discharge product of a Li-O2 battery. Yang J; Zhai D; Wang HH; Lau KC; Schlueter JA; Du P; Myers DJ; Sun YK; Curtiss LA; Amine K Phys Chem Chem Phys; 2013 Mar; 15(11):3764-71. PubMed ID: 23389737 [TBL] [Abstract][Full Text] [Related]
35. Li(+)-molecule interactions of lithium tetrafluoroborate in propylene carbonate + N,N-dimethylformamide mixtures: an FTIR spectroscopic study. Zhang B; Zhou Y; Li X; Wang J; Li G; Yun Q; Wang X Spectrochim Acta A Mol Biomol Spectrosc; 2014 Apr; 124():40-5. PubMed ID: 24463238 [TBL] [Abstract][Full Text] [Related]
36. The Role of Cesium Cation in Controlling Interphasial Chemistry on Graphite Anode in Propylene Carbonate-Rich Electrolytes. Xiang H; Mei D; Yan P; Bhattacharya P; Burton SD; von Wald Cresce A; Cao R; Engelhard MH; Bowden ME; Zhu Z; Polzin BJ; Wang CM; Xu K; Zhang JG; Xu W ACS Appl Mater Interfaces; 2015 Sep; 7(37):20687-95. PubMed ID: 26369297 [TBL] [Abstract][Full Text] [Related]
37. Electrolyte decomposition on Li-metal surfaces from first-principles theory. Ebadi M; Brandell D; Araujo CM J Chem Phys; 2016 Nov; 145(20):204701. PubMed ID: 27908145 [TBL] [Abstract][Full Text] [Related]
38. Unlocking the Low-Temperature Potential of Propylene Carbonate to -30 °C via Zhang Z; Yao T; Wang E; Sun B; Sun K; Peng Z ACS Appl Mater Interfaces; 2022 Oct; 14(40):45484-45493. PubMed ID: 36178360 [TBL] [Abstract][Full Text] [Related]
39. Characterization of lithium alkyl carbonates by X-ray photoelectron spectroscopy: experimental and theoretical study. Dedryvère R; Gireaud L; Grugeon S; Laruelle S; Tarascon JM; Gonbeau D J Phys Chem B; 2005 Aug; 109(33):15868-75. PubMed ID: 16853016 [TBL] [Abstract][Full Text] [Related]
40. Predicting autoxidation stability of ether- and amide-based electrolyte solvents for Li-air batteries. Bryantsev VS; Faglioni F J Phys Chem A; 2012 Jul; 116(26):7128-38. PubMed ID: 22681046 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]