BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 2235480)

  • 1. 'Compensatory slippage' in the evolution of ribosomal RNA genes.
    Hancock JM; Dover GA
    Nucleic Acids Res; 1990 Oct; 18(20):5949-54. PubMed ID: 2235480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Secondary structure constraints on the evolution of Drosophila 28 S ribosomal RNA expansion segments.
    Ruiz Linares A; Hancock JM; Dover GA
    J Mol Biol; 1991 Jun; 219(3):381-90. PubMed ID: 1904940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular coevolution among cryptically simple expansion segments of eukaryotic 26S/28S rRNAs.
    Hancock JM; Dover GA
    Mol Biol Evol; 1988 Jul; 5(4):377-91. PubMed ID: 3405077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of the secondary structures and compensatory mutations of the ribosomal RNAs of Drosophila melanogaster.
    Hancock JM; Tautz D; Dover GA
    Mol Biol Evol; 1988 Jul; 5(4):393-414. PubMed ID: 3136295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complete sequences of the rRNA genes of Drosophila melanogaster.
    Tautz D; Hancock JM; Webb DA; Tautz C; Dover GA
    Mol Biol Evol; 1988 Jul; 5(4):366-76. PubMed ID: 3136294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oocyte and somatic 5S ribosomal RNA and 5S RNA encoding genes in Xenopus tropicalis.
    Nietfeld W; Digweed M; Mentzel H; Meyerhof W; Köster M; Knöchel W; Erdmann VA; Pieler T
    Nucleic Acids Res; 1988 Sep; 16(18):8803-15. PubMed ID: 3174434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of eukaryotic rRNA: constraints imposed by RNA interactions.
    Gerbi SA; Jeppesen C; Stebbins-Boaz B; Ares M
    Cold Spring Harb Symp Quant Biol; 1987; 52():709-19. PubMed ID: 3454284
    [No Abstract]   [Full Text] [Related]  

  • 8. The rDNA of C. elegans: sequence and structure.
    Ellis RE; Sulston JE; Coulson AR
    Nucleic Acids Res; 1986 Mar; 14(5):2345-64. PubMed ID: 3960722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complementarity of conserved sequence elements present in 28S ribosomal RNA and in ribosomal protein genes of Xenopus laevis and Xenopus tropicalis.
    Cutruzzolá F; Loreni F; Bozzoni I
    Gene; 1986; 49(3):371-6. PubMed ID: 3569921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High evolutionary divergence of the 5.8S ribosomal DNA in Mimulus glaucescens (Scrophulariaceae).
    Ritland C; Straus NA
    Plant Mol Biol; 1993 Jul; 22(4):691-6. PubMed ID: 8343604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. rRNA genes from the lower chordate Herdmania momus: structural similarity with higher eukaryotes.
    Degnan BM; Yan J; Hawkins CJ; Lavin MF
    Nucleic Acids Res; 1990 Dec; 18(23):7063-70. PubMed ID: 2263465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequence and secondary structure of the central domain of Drosophila 26S rRNA: a universal model for the central domain of the large rRNA containing the region in which the central break may happen.
    de Lanversin G; Jacq B
    J Mol Evol; 1989 May; 28(5):403-17. PubMed ID: 2501502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The evolutionary relationships among known life forms.
    Cedergren R; Gray MW; Abel Y; Sankoff D
    J Mol Evol; 1988 Dec-1989 Feb; 28(1-2):98-112. PubMed ID: 3148747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequence comparison of the rDNA introns from six different species of Tetrahymena.
    Nielsen H; Engberg J
    Nucleic Acids Res; 1985 Oct; 13(20):7445-55. PubMed ID: 4059059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequence variations in the large-subunit ribosomal RNA gene of Ammonia (Foraminifera, Protozoa) and their evolutionary implications.
    Holzmann M; Piller W; Pawlowski J
    J Mol Evol; 1996 Aug; 43(2):145-51. PubMed ID: 8660439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Xenopus laevis 28S ribosomal RNA: a secondary structure model and its evolutionary and functional implications.
    Clark CG; Tague BW; Ware VC; Gerbi SA
    Nucleic Acids Res; 1984 Aug; 12(15):6197-220. PubMed ID: 6147812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of mitochondrial SSU-rDNA variable domain sequences and rRNA secondary structures, and phylogeny of the Agrocybe aegerita multispecies complex.
    Uhart M; Sirand-Pugnet P; Labarère J
    Res Microbiol; 2007 Apr; 158(3):203-12. PubMed ID: 17346935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular evolution of mitochondrial ribosomal DNA in the fungal genus Tricholoma: barcoding implications.
    Mouhamadou B; Carriconde F; Gryta H; Jargeat P; Manzi S; Gardes M
    Fungal Genet Biol; 2008 Sep; 45(9):1219-26. PubMed ID: 18647655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The 18S rRNA from Odontophrynus americanus 2n and 4n (Amphibia, Anura) reveals unusual extra sequences in the variable region V2.
    Alvares LE; Wuyts J; Van de Peer Y; Silva EP; Coutinho LL; Brison O; Ruiz IR
    Genome; 2004 Jun; 47(3):421-8. PubMed ID: 15190359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human 18 S ribosomal RNA sequence inferred from DNA sequence. Variations in 18 S sequences and secondary modification patterns between vertebrates.
    McCallum FS; Maden BE
    Biochem J; 1985 Dec; 232(3):725-33. PubMed ID: 4091818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.