BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 22354820)

  • 1. DFT calculations of structures, (13)C NMR chemical shifts, and Raman RBM mode of simple models of small-diameter zigzag (4,0) carboxylated single-walled carbon nanotubes.
    Kupka T; Chełmecka E; Pasterny K; Stachów M; Stobiński L
    Magn Reson Chem; 2012 Feb; 50(2):142-51. PubMed ID: 22354820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DFT calculation of structures and NMR chemical shifts of simple models of small diameter zigzag single wall carbon nanotubes (SWCNTs).
    Kupka T; Stachów M; Nieradka M; Stobiński L
    Magn Reson Chem; 2011 Sep; 49(9):549-57. PubMed ID: 21815210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DFT study of zigzag (n, 0) single-walled carbon nanotubes: (13)C NMR chemical shifts.
    Kupka T; Stachów M; Stobiński L; Kaminský J
    J Mol Graph Model; 2016 Jun; 67():14-9. PubMed ID: 27155813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calculation of Raman parameters of real-size zigzag (n, 0) single-walled carbon nanotubes using finite-size models.
    Kupka T; Stachów M; Stobiński L; Kaminský J
    Phys Chem Chem Phys; 2016 Sep; 18(36):25058-25069. PubMed ID: 27711454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unraveling the 13C NMR chemical shifts in single-walled carbon nanotubes: dependence on diameter and electronic structure.
    Engtrakul C; Irurzun VM; Gjersing EL; Holt JM; Larsen BA; Resasco DE; Blackburn JL
    J Am Chem Soc; 2012 Mar; 134(10):4850-6. PubMed ID: 22332844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DFT studies of COOH tip-functionalized zigzag and armchair single wall carbon nanotubes.
    Chełmecka E; Pasterny K; Kupka T; Stobiński L
    J Mol Model; 2012 May; 18(5):2241-6. PubMed ID: 21965032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of topological defects and diatom vacancies on characteristic vibration modes and Raman intensities of zigzag single-walled carbon nanotubes.
    Saidi WA
    J Phys Chem A; 2014 Sep; 118(35):7235-41. PubMed ID: 24279772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bare gold nanoparticles mediated surface-enhanced Raman spectroscopic determination and quantification of carboxylated single-walled carbon nanotubes.
    López-Lorente AI; Simonet BM; Valcárcel M; Mizaikoff B
    Anal Chim Acta; 2013 Jul; 788():122-8. PubMed ID: 23845490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical studies on structures, 13C NMR chemical shifts, aromaticity, and chemical reactivity of finite-length open-ended armchair single-walled carbon nanotubes.
    Liu LV; Tian WQ; Chen YK; Zhang YA; Wang YA
    Nanoscale; 2010 Feb; 2(2):254-61. PubMed ID: 20644802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective etching of thin single-walled carbon nanotubes.
    Kalbác M; Kavan L; Dunsch L
    J Am Chem Soc; 2009 Apr; 131(12):4529-34. PubMed ID: 19317509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A nonlocal shell model for mode transformation in single-walled carbon nanotubes.
    Shi MX; Li QM; Huang Y
    J Phys Condens Matter; 2009 Nov; 21(45):455301. PubMed ID: 21694006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Raman spectra of single walled carbon nanotubes at high temperatures: pretreating samples in a nitrogen atmosphere improves their thermal stability in air.
    Molina-Duarte J; Espinosa-Vega LI; Rodríguez AG; Guirado-López RA
    Phys Chem Chem Phys; 2017 Mar; 19(10):7215-7227. PubMed ID: 28233880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural, Vibrational and Electronic Properties of Defective Single-Walled Carbon Nanotubes Functionalised with Carboxyl Groups: Theoretical Studies.
    Goclon J; Kozlowska M; Rodziewicz P
    Chemphyschem; 2015 Sep; 16(13):2775-2782. PubMed ID: 26250867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Localized Gaussian type orbital-periodic boundary condition-density functional theory study of infinite-length single-walled carbon nanotubes with various tubular diameters.
    Wang HW; Wang BC; Chen WH; Hayashi M
    J Phys Chem A; 2008 Feb; 112(8):1783-90. PubMed ID: 18247507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. OH-functionalized open-ended armchair single-wall carbon nanotubes (SWCNT) studied by density functional theory.
    Chełmecka E; Pasterny K; Kupka T; Stobiński L
    J Mol Model; 2012 Apr; 18(4):1463-72. PubMed ID: 21785933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction between single-wall carbon nanotubes and encapsulated C60 probed by resonance Raman spectroscopy.
    Joung SK; Okazaki T; Okada S; Iijima S
    Phys Chem Chem Phys; 2010 Jul; 12(28):8118-22. PubMed ID: 20526513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Raman spectroscopy study and first-principles calculations of the interaction between nucleic acid bases and carbon nanotubes.
    Stepanian SG; Karachevtsev MV; Glamazda AY; Karachevtsev VA; Adamowicz L
    J Phys Chem A; 2009 Apr; 113(15):3621-9. PubMed ID: 19320448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative analysis of the effect of reabsorption on the Raman spectroscopy of distinct (
    Li S; Wei X; Li L; Cui J; Yang D; Wang Y; Zhou W; Xie S; Hirano A; Tanaka T; Kataura H; Liu H
    Anal Methods; 2020 May; 12(18):2376-2384. PubMed ID: 32930263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Raman spectroscopy of optical transitions and vibrational energies of ∼1 nm HgTe extreme nanowires within single walled carbon nanotubes.
    Spencer JH; Nesbitt JM; Trewhitt H; Kashtiban RJ; Bell G; Ivanov VG; Faulques E; Sloan J; Smith DC
    ACS Nano; 2014 Sep; 8(9):9044-52. PubMed ID: 25163005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A study on the interaction of single-walled carbon nanotubes (SWCNTs) and polystyrene (PS) at the interface in SWCNT-PS nanocomposites using tip-enhanced Raman spectroscopy.
    Yan X; Suzuki T; Kitahama Y; Sato H; Itoh T; Ozaki Y
    Phys Chem Chem Phys; 2013 Dec; 15(47):20618-24. PubMed ID: 24186236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.