These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 22354836)
1. Putative irreversible inhibitors of the human sodium-dependent bile acid transporter (hASBT; SLC10A2) support the role of transmembrane domain 7 in substrate binding/translocation. González PM; Hussainzada N; Swaan PW; Mackerell AD; Polli JE Pharm Res; 2012 Jul; 29(7):1821-31. PubMed ID: 22354836 [TBL] [Abstract][Full Text] [Related]
2. Transmembrane domain VII of the human apical sodium-dependent bile acid transporter ASBT (SLC10A2) lines the substrate translocation pathway. Hussainzada N; Banerjee A; Swaan PW Mol Pharmacol; 2006 Nov; 70(5):1565-74. PubMed ID: 16899538 [TBL] [Abstract][Full Text] [Related]
3. Structural requirements of the human sodium-dependent bile acid transporter (hASBT): role of 3- and 7-OH moieties on binding and translocation of bile acids. González PM; Lagos CF; Ward WC; Polli JE Mol Pharm; 2014 Feb; 11(2):588-98. PubMed ID: 24328955 [TBL] [Abstract][Full Text] [Related]
4. Site-directed mutagenesis and use of bile acid-MTS conjugates to probe the role of cysteines in the human apical sodium-dependent bile acid transporter (SLC10A2). Banerjee A; Ray A; Chang C; Swaan PW Biochemistry; 2005 Jun; 44(24):8908-17. PubMed ID: 15952798 [TBL] [Abstract][Full Text] [Related]
5. Interaction of native bile acids with human apical sodium-dependent bile acid transporter (hASBT): influence of steroidal hydroxylation pattern and C-24 conjugation. Balakrishnan A; Wring SA; Polli JE Pharm Res; 2006 Jul; 23(7):1451-9. PubMed ID: 16783481 [TBL] [Abstract][Full Text] [Related]
6. Synthesis and in vitro evaluation of gabapentin prodrugs that target the human apical sodium-dependent bile acid transporter (hASBT). Rais R; Fletcher S; Polli JE J Pharm Sci; 2011 Mar; 100(3):1184-95. PubMed ID: 20848648 [TBL] [Abstract][Full Text] [Related]
7. Influence of charge and steric bulk in the C-24 region on the interaction of bile acids with human apical sodium-dependent bile acid transporter. Balakrishnan A; Wring SA; Coop A; Polli JE Mol Pharm; 2006; 3(3):282-92. PubMed ID: 16749860 [TBL] [Abstract][Full Text] [Related]
8. Transmembrane helix 1 contributes to substrate translocation and protein stability of bile acid transporter SLC10A2. da Silva TC; Hussainzada N; Khantwal CM; Polli JE; Swaan PW J Biol Chem; 2011 Aug; 286(31):27322-32. PubMed ID: 21646357 [TBL] [Abstract][Full Text] [Related]
9. Transmembrane domain II of the human bile acid transporter SLC10A2 coordinates sodium translocation. Sabit H; Mallajosyula SS; MacKerell AD; Swaan PW J Biol Chem; 2013 Nov; 288(45):32394-32404. PubMed ID: 24045943 [TBL] [Abstract][Full Text] [Related]
10. Cytosolic half of transmembrane domain IV of the human bile acid transporter hASBT (SLC10A2) forms part of the substrate translocation pathway. Khantwal CM; Swaan PW Biochemistry; 2008 Mar; 47(12):3606-14. PubMed ID: 18311924 [TBL] [Abstract][Full Text] [Related]
11. Electrostatic and potential cation-pi forces may guide the interaction of extracellular loop III with Na+ and bile acids for human apical Na+-dependent bile acid transporter. Banerjee A; Hussainzada N; Khandelwal A; Swaan PW Biochem J; 2008 Mar; 410(2):391-400. PubMed ID: 18028035 [TBL] [Abstract][Full Text] [Related]
12. Inhibition requirements of the human apical sodium-dependent bile acid transporter (hASBT) using aminopiperidine conjugates of glutamyl-bile acids. González PM; Acharya C; Mackerell AD; Polli JE Pharm Res; 2009 Jul; 26(7):1665-78. PubMed ID: 19384469 [TBL] [Abstract][Full Text] [Related]
13. Transmembrane domain V plays a stabilizing role in the function of human bile acid transporter SLC10A2. Moore RH; Chothe P; Swaan PW Biochemistry; 2013 Jul; 52(30):5117-24. PubMed ID: 23815591 [TBL] [Abstract][Full Text] [Related]
14. Human bile acid transporter ASBT (SLC10A2) forms functional non-covalent homodimers and higher order oligomers. Chothe PP; Czuba LC; Moore RH; Swaan PW Biochim Biophys Acta Biomembr; 2018 Mar; 1860(3):645-653. PubMed ID: 29198943 [TBL] [Abstract][Full Text] [Related]
15. Membrane topology of human ASBT (SLC10A2) determined by dual label epitope insertion scanning mutagenesis. New evidence for seven transmembrane domains. Banerjee A; Swaan PW Biochemistry; 2006 Jan; 45(3):943-53. PubMed ID: 16411770 [TBL] [Abstract][Full Text] [Related]
16. Apical sodium dependent bile acid transporter (ASBT, SLC10A2): a potential prodrug target. Balakrishnan A; Polli JE Mol Pharm; 2006; 3(3):223-30. PubMed ID: 16749855 [TBL] [Abstract][Full Text] [Related]
17. Structural determinants for transport across the intestinal bile acid transporter using C-24 bile acid conjugates. Rais R; Acharya C; Mackerell AD; Polli JE Mol Pharm; 2010 Dec; 7(6):2240-54. PubMed ID: 20939504 [TBL] [Abstract][Full Text] [Related]
18. Tyrosine Phosphorylation Regulates Plasma Membrane Expression and Stability of the Human Bile Acid Transporter ASBT ( Chothe PP; Czuba LC; Ayewoh EN; Swaan PW Mol Pharm; 2019 Aug; 16(8):3569-3576. PubMed ID: 31194565 [TBL] [Abstract][Full Text] [Related]
19. FTF and LRH-1, two related but different transcription factors in human Caco-2 cells: their different roles in the regulation of bile acid transport. Pan DH; Chen F; Neimark E; Li X; Shneider BL Biochim Biophys Acta; 2005 Dec; 1732(1-3):31-7. PubMed ID: 16469397 [TBL] [Abstract][Full Text] [Related]
20. Identification of novel nonsteroidal compounds as substrates or inhibitors of hASBT. Kolhatkar V; Diao L; Acharya C; Mackerell AD; Polli JE J Pharm Sci; 2012 Jan; 101(1):116-26. PubMed ID: 22109685 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]