BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 2235486)

  • 1. Host sequences flanking the HIV provirus.
    Vincent KA; York-Higgins D; Quiroga M; Brown PO
    Nucleic Acids Res; 1990 Oct; 18(20):6045-7. PubMed ID: 2235486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of the junctions between human immunodeficiency virus type 1 proviral DNA and human DNA.
    Vink C; Groenink M; Elgersma Y; Fouchier RA; Tersmette M; Plasterk RH
    J Virol; 1990 Nov; 64(11):5626-7. PubMed ID: 2214029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simplified plasmid rescue of host sequences adjacent to integrated proviruses.
    Kurdi-Haidar B; Friedmann T
    Gene; 1996 Feb; 168(2):199-203. PubMed ID: 8654944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep Sequencing Analysis of Individual HIV-1 Proviruses Reveals Frequent Asymmetric Long Terminal Repeats.
    Joseph KW; Halvas EK; Brandt LD; Patro SC; Rausch JW; Chopra A; Mallal S; Kearney MF; Coffin JM; Mellors JW
    J Virol; 2022 Jul; 96(13):e0012222. PubMed ID: 35674431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proviruses with Long-Term Stable Expression Accumulate in Transcriptionally Active Chromatin Close to the Gene Regulatory Elements: Comparison of ASLV-, HIV- and MLV-Derived Vectors.
    Miklík D; Šenigl F; Hejnar J
    Viruses; 2018 Mar; 10(3):. PubMed ID: 29517993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mouse mammary tumor proviruses from a T-cell lymphoma are associated with the retroposon L1Md.
    Dudley JP
    J Virol; 1988 Feb; 62(2):472-8. PubMed ID: 2826809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Presence of multiple genetic subtypes of human immunodeficiency virus type 1 proviruses in Uganda.
    Bruce C; Clegg C; Featherstone A; Smith J; Biryahawaho B; Downing R; Oram J
    AIDS Res Hum Retroviruses; 1994 Nov; 10(11):1543-50. PubMed ID: 7888209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and analysis of retroviral integration targets by solo long terminal repeat inverse PCR.
    Jin YF; Ishibashi T; Nomoto A; Masuda M
    J Virol; 2002 Jun; 76(11):5540-7. PubMed ID: 11991982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequence analysis of the human DNA flanking sites of human immunodeficiency virus type 1 integration.
    Stevens SW; Griffith JD
    J Virol; 1996 Sep; 70(9):6459-62. PubMed ID: 8709282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly preferred targets for retrovirus integration.
    Shih CC; Stoye JP; Coffin JM
    Cell; 1988 May; 53(4):531-7. PubMed ID: 2836061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unusual DNA structures at the integration site of an HIV provirus.
    Gama Sosa MA; Hall JC; Schneider KE; Lukaszewicz GC; Ruprecht RM
    Biochem Biophys Res Commun; 1989 May; 161(1):134-42. PubMed ID: 2543406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The palindromic LTR-LTR junction of Moloney murine leukemia virus is not an efficient substrate for proviral integration.
    Lobel LI; Murphy JE; Goff SP
    J Virol; 1989 Jun; 63(6):2629-37. PubMed ID: 2724412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An MuLV transmission vector system designed to permit recovery in E. coli of proviral and cellular flanking sequences.
    Jørgensen P; Mikkelsen T; Pedersen FS; Kjeldgaard NO
    Virus Genes; 1988 Mar; 1(2):221-33. PubMed ID: 2467437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Rous sarcoma virus provirus is flanked by short direct repeats of a cellular DNA sequence present in only one copy prior to integration.
    Hughes SH; Mutschler A; Bishop JM; Varmus HE
    Proc Natl Acad Sci U S A; 1981 Jul; 78(7):4299-303. PubMed ID: 6270669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long cellular repeats flanking a defective HTLV-I provirus: implication for site-targeted integration.
    Kubota S; Furuta R; Maki M; Siomi H; Hatanaka M
    Oncogene; 1993 Oct; 8(10):2873-7. PubMed ID: 8378096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integration of human immunodeficiency virus types 1 and 2 DNA in vitro by cytoplasmic extracts of Moloney murine leukemia virus-infected mouse NIH 3T3 cells.
    Vink C; van Gent DC; Plasterk RH
    J Virol; 1990 Oct; 64(10):5219-22. PubMed ID: 2398544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of sequences in the long terminal repeat and flanking cell DNA on polyadenylation of retroviral transcripts.
    Swain A; Coffin JM
    J Virol; 1993 Oct; 67(10):6265-9. PubMed ID: 7690423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of endogenous retroviral sequences based on modular organization: proviral structure at the SSAV1 locus.
    Blusch JH; Haltmeier M; Frech K; Sander I; Leib-Mösch C; Brack-Werner R; Werner T
    Genomics; 1997 Jul; 43(1):52-61. PubMed ID: 9226372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequence analysis of HIV-1 insertion sites in peripheral blood lymphocytes.
    Lyn D; Bennett NA; Shiramizu BT; Herndier BG; Igietseme JU
    Cell Mol Biol (Noisy-le-grand); 2001 Sep; 47(6):981-6. PubMed ID: 11785664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A defective proviral DNA with a 2.6-kb deletion of human immunodeficiency virus type 1 (HIV-1) in a persistently HIV-1 infected cell clone.
    Imai H; Maotani-Imai K; Shin YS; Ikuta K; Suehiro S; Kurimura T; Kato S; Hirai K
    Virus Genes; 1991 Jan; 5(1):81-8. PubMed ID: 2017879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.