These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 22355359)

  • 41. Parasites in motion: flagellum-driven cell motility in African trypanosomes.
    Hill KL
    Curr Opin Microbiol; 2010 Aug; 13(4):459-65. PubMed ID: 20591724
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Binding of IFT22 to the intraflagellar transport complex is essential for flagellum assembly.
    Wachter S; Jung J; Shafiq S; Basquin J; Fort C; Bastin P; Lorentzen E
    EMBO J; 2019 May; 38(9):. PubMed ID: 30940671
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [The flagellum: from cell motility to morphogenesis].
    Kohl L; Robinson D; Bastin P
    J Soc Biol; 2003; 197(4):379-87. PubMed ID: 15005520
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A coiled-coil- and C2-domain-containing protein is required for FAZ assembly and cell morphology in Trypanosoma brucei.
    Zhou Q; Liu B; Sun Y; He CY
    J Cell Sci; 2011 Nov; 124(Pt 22):3848-58. PubMed ID: 22114307
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Intraflagellar transport proteins cycle between the flagellum and its base.
    Buisson J; Chenouard N; Lagache T; Blisnick T; Olivo-Marin JC; Bastin P
    J Cell Sci; 2013 Jan; 126(Pt 1):327-38. PubMed ID: 22992454
    [TBL] [Abstract][Full Text] [Related]  

  • 46. CEP164C regulates flagellum length in stable flagella.
    Atkins M; Týč J; Shafiq S; Ahmed M; Bertiaux E; De Castro Neto AL; Sunter J; Bastin P; Dean SD; Vaughan S
    J Cell Biol; 2021 Jan; 220(1):. PubMed ID: 33165561
    [TBL] [Abstract][Full Text] [Related]  

  • 47. 3D Architecture of the Trypanosoma brucei Flagella Connector, a Mobile Transmembrane Junction.
    Höög JL; Lacomble S; Bouchet-Marquis C; Briggs L; Park K; Hoenger A; Gull K
    PLoS Negl Trop Dis; 2016 Jan; 10(1):e0004312. PubMed ID: 26820516
    [TBL] [Abstract][Full Text] [Related]  

  • 48. gamma-tubulin in trypanosomes: molecular characterisation and localisation to multiple and diverse microtubule organising centres.
    Scott V; Sherwin T; Gull K
    J Cell Sci; 1997 Jan; 110 ( Pt 2)():157-68. PubMed ID: 9044046
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The repetitive microtubule-associated proteins MARP-1 and MARP-2 of Trypanosoma brucei.
    Affolter M; Hemphill A; Roditi I; Müller N; Seebeck T
    J Struct Biol; 1994; 112(3):241-51. PubMed ID: 7986649
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The flagellum of trypanosomes.
    Kohl L; Bastin P
    Int Rev Cytol; 2005; 244():227-85. PubMed ID: 16157182
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Kinesin 9 family members perform separate functions in the trypanosome flagellum.
    Demonchy R; Blisnick T; Deprez C; Toutirais G; Loussert C; Marande W; Grellier P; Bastin P; Kohl L
    J Cell Biol; 2009 Nov; 187(5):615-22. PubMed ID: 19948486
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Proteomic analyses of a bi-lobed structure in Trypanosoma brucei.
    Gheiratmand L; He CY
    Methods Mol Biol; 2015; 1270():427-36. PubMed ID: 25702133
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Microtubule-severing proteins are involved in flagellar length control and mitosis in Trypanosomatids.
    Casanova M; Crobu L; Blaineau C; Bourgeois N; Bastien P; Pagès M
    Mol Microbiol; 2009 Mar; 71(6):1353-70. PubMed ID: 19183280
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Identification and functional characterization of Trypanosoma brucei peroxin 16.
    Kalel VC; Schliebs W; Erdmann R
    Biochim Biophys Acta; 2015 Oct; 1853(10 Pt A):2326-37. PubMed ID: 26025675
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Deletion of the microtubule-associated protein 6 (MAP6) results in skeletal muscle dysfunction.
    Sébastien M; Giannesini B; Aubin P; Brocard J; Chivet M; Pietrangelo L; Boncompagni S; Bosc C; Brocard J; Rendu J; Gory-Fauré S; Andrieux A; Fourest-Lieuvin A; Fauré J; Marty I
    Skelet Muscle; 2018 Sep; 8(1):30. PubMed ID: 30231928
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Subnanometre-resolution structure of the doublet microtubule reveals new classes of microtubule-associated proteins.
    Ichikawa M; Liu D; Kastritis PL; Basu K; Hsu TC; Yang S; Bui KH
    Nat Commun; 2017 May; 8():15035. PubMed ID: 28462916
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Polo-like kinase is necessary for flagellum inheritance in Trypanosoma brucei.
    Ikeda KN; de Graffenried CL
    J Cell Sci; 2012 Jul; 125(Pt 13):3173-84. PubMed ID: 22427687
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Flagellar adhesion in Trypanosoma brucei relies on interactions between different skeletal structures in the flagellum and cell body.
    Rotureau B; Blisnick T; Subota I; Julkowska D; Cayet N; Perrot S; Bastin P
    J Cell Sci; 2014 Jan; 127(Pt 1):204-15. PubMed ID: 24163437
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The flagellum of Trypanosoma brucei: new tricks from an old dog.
    Ralston KS; Hill KL
    Int J Parasitol; 2008 Jul; 38(8-9):869-84. PubMed ID: 18472102
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Flagellar targeting of an arginine kinase requires a conserved lipidated protein intraflagellar transport (LIFT) pathway in
    Pandey M; Huang Y; Lim TK; Lin Q; He CY
    J Biol Chem; 2020 Aug; 295(32):11326-11336. PubMed ID: 32587088
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.