These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 22355634)

  • 1. Field-induced quantum fluctuations in the heavy fermion superconductor CeCu(2)Ge(2).
    Singh DK; Thamizhavel A; Lynn JW; Dhar S; Rodriguez-Rivera J; Herman T
    Sci Rep; 2011; 1():117. PubMed ID: 22355634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Foundations of heavy-fermion superconductivity: lattice Kondo effect and Mott physics.
    Steglich F; Wirth S
    Rep Prog Phys; 2016 Aug; 79(8):084502. PubMed ID: 27376190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of superconducting transition temperature due to the strong antiferromagnetic spin fluctuations in the noncentrosymmetric heavy-fermion superconductor CeIrSi3: A 29Si NMR study under pressure.
    Mukuda H; Fujii T; Ohara T; Harada A; Yashima M; Kitaoka Y; Okuda Y; Settai R; Onuki Y
    Phys Rev Lett; 2008 Mar; 100(10):107003. PubMed ID: 18352225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unconventional quantum criticality in the pressure-induced heavy-fermion superconductor CeRhIn₅.
    Park T; Sidorov VA; Lee H; Ronning F; Bauer ED; Sarrao JL; Thompson JD
    J Phys Condens Matter; 2011 Mar; 23(9):094218. PubMed ID: 21339571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Full-Gap Superconductivity Robust against Disorder in Heavy-Fermion CeCu_{2}Si_{2}.
    Takenaka T; Mizukami Y; Wilcox JA; Konczykowski M; Seiro S; Geibel C; Tokiwa Y; Kasahara Y; Putzke C; Matsuda Y; Carrington A; Shibauchi T
    Phys Rev Lett; 2017 Aug; 119(7):077001. PubMed ID: 28949698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hidden magnetism and quantum criticality in the heavy fermion superconductor CeRhIn5.
    Park T; Ronning F; Yuan HQ; Salamon MB; Movshovich R; Sarrao JL; Thompson JD
    Nature; 2006 Mar; 440(7080):65-8. PubMed ID: 16511490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heavy-fermion quantum criticality and destruction of the Kondo effect in a nickel oxypnictide.
    Luo Y; Pourovskii L; Rowley SE; Li Y; Feng C; Georges A; Dai J; Cao G; Xu Z; Si Q; Ong NP
    Nat Mater; 2014 Aug; 13(8):777-81. PubMed ID: 24859644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From Kondo lattices to Kondo superlattices.
    Shimozawa M; Goh SK; Shibauchi T; Matsuda Y
    Rep Prog Phys; 2016 Jul; 79(7):074503. PubMed ID: 27275757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superconductivity versus quantum criticality: what can we learn from heavy fermions?
    Steglich F; Arndt J; Friedemann S; Krellner C; Tokiwa Y; Westerkamp T; Brando M; Gegenwart P; Geibel C; Wirth S; Stockert O
    J Phys Condens Matter; 2010 Apr; 22(16):164202. PubMed ID: 21386408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlling unconventional superconductivity in artificially engineered
    Naritsuka M; Terashima T; Matsuda Y
    J Phys Condens Matter; 2021 May; 33(27):. PubMed ID: 33946054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emergent loop-nodal s(±)-wave superconductivity in CeCu(2)Si(2): similarities to the iron-based superconductors.
    Ikeda H; Suzuki MT; Arita R
    Phys Rev Lett; 2015 Apr; 114(14):147003. PubMed ID: 25910154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Revealing the Heavy Quasiparticles in the Heavy-Fermion Superconductor CeCu_{2}Si_{2}.
    Wu Z; Fang Y; Su H; Xie W; Li P; Wu Y; Huang Y; Shen D; Thiagarajan B; Adell J; Cao C; Yuan H; Steglich F; Liu Y
    Phys Rev Lett; 2021 Aug; 127(6):067002. PubMed ID: 34420319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetism, f-electron localization and superconductivity in 122-type heavy-fermion metals.
    Steglich F; Arndt J; Stockert O; Friedemann S; Brando M; Klingner C; Krellner C; Geibel C; Wirth S; Kirchner S; Si Q
    J Phys Condens Matter; 2012 Jul; 24(29):294201. PubMed ID: 22773300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Signature of quantum criticality in photoemission spectroscopy.
    Klein M; Nuber A; Reinert F; Kroha J; Stockert O; van Löhneysen H
    Phys Rev Lett; 2008 Dec; 101(26):266404. PubMed ID: 19437657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unconventional superconductivity from local spin fluctuations in the Kondo lattice.
    Bodensiek O; Žitko R; Vojta M; Jarrell M; Pruschke T
    Phys Rev Lett; 2013 Apr; 110(14):146406. PubMed ID: 25167017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emergent Critical Charge Fluctuations at the Kondo Breakdown of Heavy Fermions.
    Komijani Y; Coleman P
    Phys Rev Lett; 2019 May; 122(21):217001. PubMed ID: 31283303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlling superconductivity by tunable quantum critical points.
    Seo S; Park E; Bauer ED; Ronning F; Kim JN; Shim JH; Thompson JD; Park T
    Nat Commun; 2015 Mar; 6():6433. PubMed ID: 25737108
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superconductivity in the vicinity of antiferromagnetic order in CrAs.
    Wu W; Cheng J; Matsubayashi K; Kong P; Lin F; Jin C; Wang N; Uwatoko Y; Luo J
    Nat Commun; 2014 Nov; 5():5508. PubMed ID: 25407672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gap Symmetry of the Heavy Fermion Superconductor CeCu_{2}Si_{2} at Ambient Pressure.
    Li Y; Liu M; Fu Z; Chen X; Yang F; Yang YF
    Phys Rev Lett; 2018 May; 120(21):217001. PubMed ID: 29883182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spin fluctuations in normal state CeCu2Si2 on approaching the quantum critical point.
    Arndt J; Stockert O; Schmalzl K; Faulhaber E; Jeevan HS; Geibel C; Schmidt W; Loewenhaupt M; Steglich F
    Phys Rev Lett; 2011 Jun; 106(24):246401. PubMed ID: 21770582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.