These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. A new and sensitive on-line liquid chromatography/mass spectrometric approach for top-down protein analysis: the comprehensive analysis of human growth hormone in an E. coli lysate using a hybrid linear ion trap/Fourier transform ion cyclotron resonance mass spectrometer. Wu SL; Jardine I; Hancock WS; Karger BL Rapid Commun Mass Spectrom; 2004; 18(19):2201-7. PubMed ID: 15384137 [TBL] [Abstract][Full Text] [Related]
5. Top-down proteomics on a high-field Fourier transform ion cyclotron resonance mass spectrometer. Ouvry-Patat SA; Torres MP; Gelfand CA; Quek HH; Easterling M; Speir JP; Borchers CH Methods Mol Biol; 2009; 492():215-31. PubMed ID: 19241035 [TBL] [Abstract][Full Text] [Related]
6. A Top-Down Proteomics Platform Coupling Serial Size Exclusion Chromatography and Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Tucholski T; Knott SJ; Chen B; Pistono P; Lin Z; Ge Y Anal Chem; 2019 Mar; 91(6):3835-3844. PubMed ID: 30758949 [TBL] [Abstract][Full Text] [Related]
7. Targeted tandem mass spectrometry for high-throughput comparative proteomics employing NanoLC-FTICR MS with external ion dissociation. Kang H; Pasa-Tolić L; Smith RD J Am Soc Mass Spectrom; 2007 Jul; 18(7):1332-43. PubMed ID: 17531500 [TBL] [Abstract][Full Text] [Related]
8. Free-flow electrophoresis for top-down proteomics by Fourier transform ion cyclotron resonance mass spectrometry. Ouvry-Patat SA; Torres MP; Quek HH; Gelfand CA; O'Mullan P; Nissum M; Schroeder GK; Han J; Elliott M; Dryhurst D; Ausio J; Wolfenden R; Borchers CH Proteomics; 2008 Jul; 8(14):2798-808. PubMed ID: 18655049 [TBL] [Abstract][Full Text] [Related]
9. An automated high performance capillary liquid chromatography-Fourier transform ion cyclotron resonance mass spectrometer for high-throughput proteomics. Belov ME; Anderson GA; Wingerd MA; Udseth HR; Tang K; Prior DC; Swanson KR; Buschbach MA; Strittmatter EF; Moore RJ; Smith RD J Am Soc Mass Spectrom; 2004 Feb; 15(2):212-32. PubMed ID: 14766289 [TBL] [Abstract][Full Text] [Related]
10. Developments in FTICR-MS and Its Potential for Body Fluid Signatures. Nicolardi S; Bogdanov B; Deelder AM; Palmblad M; van der Burgt YE Int J Mol Sci; 2015 Nov; 16(11):27133-44. PubMed ID: 26580595 [TBL] [Abstract][Full Text] [Related]
11. Top-down approaches for measuring expression ratios of intact yeast proteins using Fourier transform mass spectrometry. Du Y; Parks BA; Sohn S; Kwast KE; Kelleher NL Anal Chem; 2006 Feb; 78(3):686-94. PubMed ID: 16448040 [TBL] [Abstract][Full Text] [Related]
12. Advanced nanoscale separations and mass spectrometry for sensitive high-throughput proteomics. Shen Y; Smith RD Expert Rev Proteomics; 2005 Jun; 2(3):431-47. PubMed ID: 16000088 [TBL] [Abstract][Full Text] [Related]
13. Extended Range Proteomic Analysis (ERPA): a new and sensitive LC-MS platform for high sequence coverage of complex proteins with extensive post-translational modifications-comprehensive analysis of beta-casein and epidermal growth factor receptor (EGFR). Wu SL; Kim J; Hancock WS; Karger B J Proteome Res; 2005; 4(4):1155-70. PubMed ID: 16083266 [TBL] [Abstract][Full Text] [Related]
14. Increased throughput and reduced carryover of mass spectrometry-based proteomics using a high-efficiency nonsplit nanoflow parallel dual-column capillary HPLC system. Wang H; Hanash SM J Proteome Res; 2008 Jul; 7(7):2743-55. PubMed ID: 18512973 [TBL] [Abstract][Full Text] [Related]
15. Top-down proteomics on a chromatographic time scale using linear ion trap fourier transform hybrid mass spectrometers. Parks BA; Jiang L; Thomas PM; Wenger CD; Roth MJ; Boyne MT; Burke PV; Kwast KE; Kelleher NL Anal Chem; 2007 Nov; 79(21):7984-91. PubMed ID: 17915963 [TBL] [Abstract][Full Text] [Related]
16. A novel mass spectrometry cluster for high-throughput quantitative proteomics. Palmblad M; van der Burgt YE; Mostovenko E; Dalebout H; Deelder AM J Am Soc Mass Spectrom; 2010 Jun; 21(6):1002-11. PubMed ID: 20194034 [TBL] [Abstract][Full Text] [Related]
17. Top-down protein identification of proteasome proteins with nanoLC-FT-ICR-MS employing data-independent fragmentation methods. Lakshmanan R; Wolff JJ; Alvarado R; Loo JA Proteomics; 2014 May; 14(10):1271-82. PubMed ID: 24478249 [TBL] [Abstract][Full Text] [Related]
18. Disposable chromatography for a high-throughput nano-ESI/MS and nano-ESI/MS-MS platform. Williams JG; Tomer KB J Am Soc Mass Spectrom; 2004 Sep; 15(9):1333-40. PubMed ID: 15337514 [TBL] [Abstract][Full Text] [Related]
19. Size-sorting combined with improved nanocapillary liquid chromatography-mass spectrometry for identification of intact proteins up to 80 kDa. Vellaichamy A; Tran JC; Catherman AD; Lee JE; Kellie JF; Sweet SM; Zamdborg L; Thomas PM; Ahlf DR; Durbin KR; Valaskovic GA; Kelleher NL Anal Chem; 2010 Feb; 82(4):1234-44. PubMed ID: 20073486 [TBL] [Abstract][Full Text] [Related]
20. Top-down identification and quantification of stable isotope labeled proteins from Aspergillus flavus using online nano-flow reversed-phase liquid chromatography coupled to a LTQ-FTICR mass spectrometer. Collier TS; Hawkridge AM; Georgianna DR; Payne GA; Muddiman DC Anal Chem; 2008 Jul; 80(13):4994-5001. PubMed ID: 18512951 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]