BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 22356186)

  • 21. A microcrystalline cellulose based drug-composite formulation strategy for developing low dose drug tablets.
    Sun WJ; Sun CC
    Int J Pharm; 2020 Jul; 585():119517. PubMed ID: 32526333
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Understanding the Factors That Control the Quality of Mini-Tablet Compression: Flow, Particle Size, and Tooling Dimension.
    Zhao J; Yin D; Rowe J; Badawy S; Nikfar F; Pandey P
    J Pharm Sci; 2018 Apr; 107(4):1204-1208. PubMed ID: 29233726
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mixing of low-dose cohesive drug and overcoming of pre-blending step using a new gentle-wing high-shear mixer granulator.
    Alsulays BB; Fayed MH; Alalaiwe A; Alshahrani SM; Alshetaili AS; Alshehri SM; Alanazi FK
    Drug Dev Ind Pharm; 2018 Sep; 44(9):1520-1527. PubMed ID: 29718720
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of the effects of different drying techniques on properties of granules and tablets made on a production scale.
    Hegedus A; Pintye-Hódi K
    Int J Pharm; 2007 Feb; 330(1-2):99-104. PubMed ID: 17049769
    [TBL] [Abstract][Full Text] [Related]  

  • 25. To determine the end point of wet granulation by measuring powder energies and thermal properties.
    Dave RH; Wu SH; Contractor LD
    Drug Dev Ind Pharm; 2012 Apr; 38(4):439-46. PubMed ID: 22188039
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluating scale-up rules of a high-shear wet granulation process.
    Tao J; Pandey P; Bindra DS; Gao JZ; Narang AS
    J Pharm Sci; 2015 Jul; 104(7):2323-33. PubMed ID: 26010137
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prediction of tablet characteristics from residual stress distribution estimated by the finite element method.
    Hayashi Y; Miura T; Shimada T; Onuki Y; Obata Y; Takayama K
    J Pharm Sci; 2013 Oct; 102(10):3678-86. PubMed ID: 23897300
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative evaluation of tableting compression behaviors by methods of internal and external lubricant addition: inhibition of enzymatic activity of trypsin preparation by using external lubricant addition during the tableting compression process.
    Otsuka M; Sato M; Matsuda Y
    AAPS PharmSci; 2001; 3(3):E20. PubMed ID: 11741271
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Massing in high shear wet granulation can simultaneously improve powder flow and deteriorate powder compaction: a double-edged sword.
    Shi L; Feng Y; Sun CC
    Eur J Pharm Sci; 2011 May; 43(1-2):50-6. PubMed ID: 21443948
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chemometric evaluation of pharmaceutical properties of antipyrine granules by near-infrared spectroscopy.
    Otsuka M; Mouri Y; Matsuda Y
    AAPS PharmSciTech; 2003; 4(3):E47. PubMed ID: 14621979
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Insensitivity of compaction properties of brittle granules to size enlargement by roller compaction.
    Wu SJ; Sun C
    J Pharm Sci; 2007 May; 96(5):1445-50. PubMed ID: 17455348
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Granule size distribution of tablets.
    Virtanen S; Antikainen O; Räikkönen H; Yliruusi J
    J Pharm Sci; 2010 Apr; 99(4):2061-9. PubMed ID: 19780134
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An investigation into the impact of magnesium stearate on powder feeding during roller compaction.
    Dawes J; Gamble JF; Greenwood R; Robbins P; Tobyn M
    Drug Dev Ind Pharm; 2012 Jan; 38(1):111-22. PubMed ID: 21810064
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prediction of granule physical property by a novel compression energy of wet powder.
    Ohnishi Y; Watano S
    Chem Pharm Bull (Tokyo); 2006 Sep; 54(9):1244-7. PubMed ID: 16946528
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Studies on the compressibility of wax matrix granules of acetaminophen and their admixtures with various tableting bases.
    Uhumwangho MU; Okor RS
    Pak J Pharm Sci; 2006 Apr; 19(2):103-7. PubMed ID: 16751119
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Combining experimental design and orthogonal projections to latent structures to study the influence of microcrystalline cellulose properties on roll compaction.
    Dumarey M; Wikström H; Fransson M; Sparén A; Tajarobi P; Josefson M; Trygg J
    Int J Pharm; 2011 Sep; 416(1):110-9. PubMed ID: 21708239
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Critical evaluation of root causes of the reduced compactability after roll compaction/dry granulation.
    Mosig J; Kleinebudde P
    J Pharm Sci; 2015 Mar; 104(3):1108-18. PubMed ID: 25558976
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Clarifying the mechanism of aggregation of particles in high-shear granulation based on their surface properties by using micro-spectroscopy.
    Kano T; Yoshihashi Y; Yonemochi E; Terada K
    Int J Pharm; 2014 Jan; 461(1-2):495-504. PubMed ID: 24368102
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Linking granulation performance with residence time and granulation liquid distributions in twin-screw granulation: An experimental investigation.
    Kumar A; Alakarjula M; Vanhoorne V; Toiviainen M; De Leersnyder F; Vercruysse J; Juuti M; Ketolainen J; Vervaet C; Remon JP; Gernaey KV; De Beer T; Nopens I
    Eur J Pharm Sci; 2016 Jul; 90():25-37. PubMed ID: 26709082
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Preparation of rapidly disintegrating tablet using new types of microcrystalline cellulose (PH-M series) and low substituted-hydroxypropylcellulose or spherical sugar granules by direct compression method.
    Ishikawa T; Mukai B; Shiraishi S; Utoguchi N; Fujii M; Matsumoto M; Watanabe Y
    Chem Pharm Bull (Tokyo); 2001 Feb; 49(2):134-9. PubMed ID: 11217097
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.