These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 22356317)

  • 1. Click strategies for single-molecule protein fluorescence.
    Milles S; Tyagi S; Banterle N; Koehler C; VanDelinder V; Plass T; Neal AP; Lemke EA
    J Am Chem Soc; 2012 Mar; 134(11):5187-95. PubMed ID: 22356317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient single-molecule fluorescence resonance energy transfer analysis by site-specific dual-labeling of protein using an unnatural amino acid.
    Seo MH; Lee TS; Kim E; Cho YL; Park HS; Yoon TY; Kim HS
    Anal Chem; 2011 Dec; 83(23):8849-54. PubMed ID: 22035235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetically encoded click chemistry for single-molecule FRET of proteins.
    Tyagi S; Lemke EA
    Methods Cell Biol; 2013; 113():169-87. PubMed ID: 23317903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simple and efficient strategy for site-specific dual labeling of proteins for single-molecule fluorescence resonance energy transfer analysis.
    Kim J; Seo MH; Lee S; Cho K; Yang A; Woo K; Kim HS; Park HS
    Anal Chem; 2013 Feb; 85(3):1468-74. PubMed ID: 23276151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generating permissive site-specific unnatural aminoacyl-tRNA synthetases.
    Miyake-Stoner SJ; Refakis CA; Hammill JT; Lusic H; Hazen JL; Deiters A; Mehl RA
    Biochemistry; 2010 Mar; 49(8):1667-77. PubMed ID: 20082521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-molecule fluorescence studies of intrinsically disordered proteins.
    Ferreon AC; Moran CR; Gambin Y; Deniz AA
    Methods Enzymol; 2010; 472():179-204. PubMed ID: 20580965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accurate single-molecule FRET studies using multiparameter fluorescence detection.
    Sisamakis E; Valeri A; Kalinin S; Rothwell PJ; Seidel CA
    Methods Enzymol; 2010; 475():455-514. PubMed ID: 20627168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein biosensors based on the principle of fluorescence resonance energy transfer for monitoring cellular dynamics.
    Li IT; Pham E; Truong K
    Biotechnol Lett; 2006 Dec; 28(24):1971-82. PubMed ID: 17021660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual Unnatural Amino Acid Incorporation and Click-Chemistry Labeling to Enable Single-Molecule FRET Studies of p97 Folding.
    Lee TC; Kang M; Kim CH; Schultz PG; Chapman E; Deniz AA
    Chembiochem; 2016 Jun; 17(11):981-4. PubMed ID: 27115850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space.
    Fromer M; Yanover C
    Proteins; 2009 May; 75(3):682-705. PubMed ID: 19003998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic code expansion enabled site-specific dual-color protein labeling: superresolution microscopy and beyond.
    Nikić I; Lemke EA
    Curr Opin Chem Biol; 2015 Oct; 28():164-73. PubMed ID: 26302384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single molecule FRET for the study on structural dynamics of biomolecules.
    Sugawa M; Arai Y; Iwane AH; Ishii Y; Yanagida T
    Biosystems; 2007 Apr; 88(3):243-50. PubMed ID: 17276585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cotranslational Incorporation into Proteins of a Fluorophore Suitable for smFRET Studies.
    Sadoine M; Cerminara M; Gerrits M; Fitter J; Katranidis A
    ACS Synth Biol; 2018 Feb; 7(2):405-411. PubMed ID: 29370697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Introducing bioorthogonal functionalities into proteins in living cells.
    Hao Z; Hong S; Chen X; Chen PR
    Acc Chem Res; 2011 Sep; 44(9):742-51. PubMed ID: 21634380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-fluorophore fluorescence resonance energy transfer for probing nucleic acids structure and folding.
    Liu J; Lu Y
    Methods Mol Biol; 2006; 335():257-71. PubMed ID: 16785633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiply labeling proteins for studies of folding and stability.
    Haney CM; Wissner RF; Petersson EJ
    Curr Opin Chem Biol; 2015 Oct; 28():123-30. PubMed ID: 26253346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incorporation of Unnatural Amino Acids into Proteins Expressed in Mammalian Cells.
    Serfling R; Coin I
    Methods Enzymol; 2016; 580():89-107. PubMed ID: 27586329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strategy for efficient site-specific FRET-dye labeling of ubiquitin.
    Kao MW; Yang LL; Lin JC; Lim TS; Fann W; Chen RP
    Bioconjug Chem; 2008 Jun; 19(6):1124-6. PubMed ID: 18507427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Site-specific labeling of proteins for single-molecule FRET measurements using genetically encoded ketone functionalities.
    Lemke EA
    Methods Mol Biol; 2011; 751():3-15. PubMed ID: 21674321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein engineering with unnatural amino acids.
    Zhang WH; Otting G; Jackson CJ
    Curr Opin Struct Biol; 2013 Aug; 23(4):581-7. PubMed ID: 23835227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.