These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 22356319)

  • 1. Inhibition of galactosyltransferases by a novel class of donor analogues.
    Descroix K; Pesnot T; Yoshimura Y; Gehrke SS; Wakarchuk W; Palcic MM; Wagner GK
    J Med Chem; 2012 Mar; 55(5):2015-24. PubMed ID: 22356319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel fluorescent probe for retaining galactosyltransferases.
    Pesnot T; Palcic MM; Wagner GK
    Chembiochem; 2010 Jul; 11(10):1392-8. PubMed ID: 20533489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The first C-glycosidic analogue of a novel galactosyltransferase inhibitor.
    Descroix K; Wagner GK
    Org Biomol Chem; 2011 Mar; 9(6):1855-63. PubMed ID: 21267505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of the retaining galactosyltransferase LgtC from Neisseria meningitidis in complex with donor and acceptor sugar analogs.
    Persson K; Ly HD; Dieckelmann M; Wakarchuk WW; Withers SG; Strynadka NC
    Nat Struct Biol; 2001 Feb; 8(2):166-75. PubMed ID: 11175908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specific inhibition of an alpha-galactosyltransferase from Trypanosoma brucei by synthetic substrate analogues.
    Kolb V; Amann F; Schmidt RR; Duszenko M
    Glycoconj J; 1999 Sep; 16(9):537-44. PubMed ID: 10815990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective inhibition of beta-1,4- and alpha-1,3-galactosyltransferases: donor sugar-nucleotide based approach.
    Takayama S; Chung SJ; Igarashi Y; Ichikawa Y; Sepp A; Lechler RI; Wu J; Hayashi T; Siuzdak G; Wong CH
    Bioorg Med Chem; 1999 Feb; 7(2):401-9. PubMed ID: 10218835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sweet secrets of synthesis.
    Davies GJ
    Nat Struct Biol; 2001 Feb; 8(2):98-100. PubMed ID: 11175889
    [No Abstract]   [Full Text] [Related]  

  • 8. Structure of bovine alpha-1,3-galactosyltransferase and its complexes with UDP and DPGal inferred from molecular modeling.
    Rao M; Tvaroska I
    Proteins; 2001 Sep; 44(4):428-34. PubMed ID: 11484220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Concise syntheses of selective inhibitors against α-1,3-galactosyltransferase.
    Zhang GL; Zhang LH; Ye XS
    Org Biomol Chem; 2010 Nov; 8(22):5062-8. PubMed ID: 20820649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thiosugar nucleotide analogs: synthesis of 5'-(2,3,4-tri-O-acetyl-6-S-acetyl-6-thio-alpha-D-galactopyranosyl diphosphate).
    Elhalabi J; Rice KG
    Carbohydr Res; 2002 Nov; 337(21-23):1935-40. PubMed ID: 12433459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. En route to deoxygenated N-acetyllactosamine analogues employing uridyl and galactosyl transferases.
    Lazarevic D; Streicher H; Thiem J
    Carbohydr Res; 2009 Aug; 344(12):1449-52. PubMed ID: 19560126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis of UDP-galactose binding by alpha-1,3-galactosyltransferase (alpha3GT): role of negative charge on aspartic acid 316 in structure and activity.
    Tumbale P; Jamaluddin H; Thiyagarajan N; Brew K; Acharya KR
    Biochemistry; 2008 Aug; 47(33):8711-8. PubMed ID: 18651752
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of 2-deoxy-hexopyranosyl derivatives of uridine as donor substrate analogues for glycosyltransferases.
    Wandzik I; Bieg T; Czaplicka M
    Bioorg Chem; 2009 Dec; 37(6):211-6. PubMed ID: 19765794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rational design, synthesis, and characterization of novel inhibitors for human beta1,4-galactosyltransferase.
    Takaya K; Nagahori N; Kurogochi M; Furuike T; Miura N; Monde K; Lee YC; Nishimura S
    J Med Chem; 2005 Sep; 48(19):6054-65. PubMed ID: 16162007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational changes induced by binding UDP-2F-galactose to alpha-1,3 galactosyltransferase- implications for catalysis.
    Jamaluddin H; Tumbale P; Withers SG; Acharya KR; Brew K
    J Mol Biol; 2007 Jun; 369(5):1270-81. PubMed ID: 17493636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. One-step synthesis of novel glycosyltransferase inhibitors.
    Evitt A; Tedaldi LM; Wagner GK
    Chem Commun (Camb); 2012 Dec; 48(97):11856-8. PubMed ID: 23125983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two galactosyltransferases' selection of different binders from the same uridine-based dynamic combinatorial library.
    Valade A; Urban D; Beau JM
    J Comb Chem; 2007; 9(1):1-4. PubMed ID: 17206823
    [No Abstract]   [Full Text] [Related]  

  • 18. Target-assisted selection of galactosyltransferase binders from dynamic combinatorial libraries. An unexpected solution with restricted amounts of the enzyme.
    Valade A; Urban D; Beau JM
    Chembiochem; 2006 Jul; 7(7):1023-7. PubMed ID: 16715540
    [No Abstract]   [Full Text] [Related]  

  • 19. Crystal structure of beta1,4-galactosyltransferase complex with UDP-Gal reveals an oligosaccharide acceptor binding site.
    Ramakrishnan B; Balaji PV; Qasba PK
    J Mol Biol; 2002 Apr; 318(2):491-502. PubMed ID: 12051854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Covalent inhibitors of LgtC: A blueprint for the discovery of non-substrate-like inhibitors for bacterial glycosyltransferases.
    Xu Y; Smith R; Vivoli M; Ema M; Goos N; Gehrke S; Harmer NJ; Wagner GK
    Bioorg Med Chem; 2017 Jun; 25(12):3182-3194. PubMed ID: 28462843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.