BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 22356461)

  • 21. Modulatory effects of the GABAergic basal ganglia neurons on the PPN and the muscle tone inhibitory system in cats.
    Takakusaki K; Obara K; Nozu T; Okumura T
    Arch Ital Biol; 2011 Dec; 149(4):385-405. PubMed ID: 22205597
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Colocalization of calcium-binding proteins and GABA in neurons of the rat basolateral amygdala.
    McDonald AJ; Mascagni F
    Neuroscience; 2001; 105(3):681-93. PubMed ID: 11516833
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mitochondrial abnormality associates with type-specific neuronal loss and cell morphology changes in the pedunculopontine nucleus in Parkinson disease.
    Pienaar IS; Elson JL; Racca C; Nelson G; Turnbull DM; Morris CM
    Am J Pathol; 2013 Dec; 183(6):1826-1840. PubMed ID: 24099985
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pedunculopontine nucleus in the squirrel monkey: distribution of cholinergic and monoaminergic neurons in the mesopontine tegmentum with evidence for the presence of glutamate in cholinergic neurons.
    Lavoie B; Parent A
    J Comp Neurol; 1994 Jun; 344(2):190-209. PubMed ID: 7915726
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rethinking the Pedunculopontine Nucleus: From Cellular Organization to Function.
    Mena-Segovia J; Bolam JP
    Neuron; 2017 Apr; 94(1):7-18. PubMed ID: 28384477
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Activity profiles of cholinergic and intermingled GABAergic and putative glutamatergic neurons in the pontomesencephalic tegmentum of urethane-anesthetized rats.
    Boucetta S; Jones BE
    J Neurosci; 2009 Apr; 29(14):4664-74. PubMed ID: 19357291
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The pedunculopontine and laterodorsal tegmental nuclei in the kainate model of epilepsy.
    Soares JI; Afonso AR; Maia GH; Lukoyanov NV
    Neurosci Lett; 2018 Apr; 672():90-95. PubMed ID: 29476797
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The anterior and posterior pedunculopontine tegmental nucleus are involved in behavior and neuronal activity of the cuneiform and entopeduncular nuclei.
    Jin X; Schwabe K; Krauss JK; Alam M
    Neuroscience; 2016 May; 322():39-53. PubMed ID: 26880033
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of pedunculopontine cholinergic neurons in the vulnerability of nigral dopaminergic neurons in Parkinson's disease.
    Bensaid M; Michel PP; Clark SD; Hirsch EC; François C
    Exp Neurol; 2016 Jan; 275 Pt 1():209-19. PubMed ID: 26571193
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The firing activity of presumed cholinergic and non-cholinergic neurons of the pedunculopontine nucleus in 6-hydroxydopamine-lesioned rats: an in vivo electrophysiological study.
    Zhang QJ; Liu J; Wang Y; Wang S; Wu ZH; Yan W; Hui YP; Ali U
    Brain Res; 2008 Dec; 1243():152-60. PubMed ID: 18824158
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cholinergic neurons in the pedunculopontine tegmental nucleus modulate breathing in rats by direct projections to the retrotrapezoid nucleus.
    Lima JD; Sobrinho CR; Falquetto B; Santos LK; Takakura AC; Mulkey DK; Moreira TS
    J Physiol; 2019 Apr; 597(7):1919-1934. PubMed ID: 30724347
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pedunculopontine nucleus in the squirrel monkey: cholinergic and glutamatergic projections to the substantia nigra.
    Lavoie B; Parent A
    J Comp Neurol; 1994 Jun; 344(2):232-41. PubMed ID: 7915727
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Distribution of parvalbumin, calbindin and calretinin containing neurons and terminal networks in relation to sleep associated nuclei in the brain of the giant Zambian mole-rat (Fukomys mechowii).
    Bhagwandin A; Gravett N; Bennett NC; Manger PR
    J Chem Neuroanat; 2013 Sep; 52():69-79. PubMed ID: 23796985
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Selective lesions of the cholinergic neurons within the posterior pedunculopontine do not alter operant learning or nicotine sensitization.
    MacLaren DA; Wilson DI; Winn P
    Brain Struct Funct; 2016 Apr; 221(3):1481-97. PubMed ID: 25586659
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Calcium-binding proteins in primate basal ganglia.
    Parent A; Fortin M; Côté PY; Cicchetti F
    Neurosci Res; 1996 Aug; 25(4):309-34. PubMed ID: 8866512
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Alterations in NMDAR-mediated signaling within the laterodorsal tegmental nucleus are associated with prenatal nicotine exposure.
    Polli FS; Kohlmeier KA
    Neuropharmacology; 2019 Nov; 158():107744. PubMed ID: 31437434
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reciprocal interaction between monoaminergic systems and the pedunculopontine nucleus: Implication in the mechanism of L-DOPA.
    Di Giovanni G; Chagraoui A; Puginier E; Galati S; De Deurwaerdère P
    Neurobiol Dis; 2019 Aug; 128():9-18. PubMed ID: 30149181
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Distribution and role of Kv3.1b in neurons in the medial septum diagonal band complex.
    Henderson Z; Lu CB; Janzsó G; Matto N; McKinley CE; Yanagawa Y; Halasy K
    Neuroscience; 2010 Mar; 166(3):952-69. PubMed ID: 20083165
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Long-term effects of striatal lesions on c-Fos immunoreactivity in the pedunculopontine nucleus.
    Mena-Segovia J; Favila R; Giordano M
    Eur J Neurosci; 2004 Nov; 20(9):2367-76. PubMed ID: 15525278
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Serotonin 5-HT4 receptors and forebrain cholinergic system: receptor expression in identified cell populations.
    Peñas-Cazorla R; Vilaró MT
    Brain Struct Funct; 2015 Nov; 220(6):3413-34. PubMed ID: 25183542
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.