BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 22356681)

  • 41. The promise of bone cancer proteomics.
    Byrum S; Montgomery CO; Nicholas RW; Suva LJ
    Ann N Y Acad Sci; 2010 Mar; 1192():222-9. PubMed ID: 20392240
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Semaphorin-plexin signalling genes associated with human breast tumourigenesis.
    Gabrovska PN; Smith RA; Tiang T; Weinstein SR; Haupt LM; Griffiths LR
    Gene; 2011 Dec; 489(2):63-9. PubMed ID: 21925246
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Discovery of a novel unfolded protein response phenotype of cancer stem/progenitor cells from the bone marrow of breast cancer patients.
    Bartkowiak K; Effenberger KE; Harder S; Andreas A; Buck F; Peter-Katalinic J; Pantel K; Brandt BH
    J Proteome Res; 2010 Jun; 9(6):3158-68. PubMed ID: 20423148
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Polymerase chain reaction analysis of parathyroid hormone-related protein gene expression in breast cancer patients and occurrence of bone metastases.
    Bouizar Z; Spyratos F; Deytieux S; de Vernejoul MC; Jullienne A
    Cancer Res; 1993 Nov; 53(21):5076-8. PubMed ID: 8221637
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Identification of metastasis-related proteins and their clinical relevance to triple-negative human breast cancer.
    Sun B; Zhang S; Zhang D; Li Y; Zhao X; Luo Y; Guo Y
    Clin Cancer Res; 2008 Nov; 14(21):7050-9. PubMed ID: 18981002
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The LCC15-MB human breast cancer cell line expresses osteopontin and exhibits an invasive and metastatic phenotype.
    Sung V; Gilles C; Murray A; Clarke R; Aaron AD; Azumi N; Thompson EW
    Exp Cell Res; 1998 Jun; 241(2):273-84. PubMed ID: 9637769
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Hypoxia and hypoxia-inducible factor-1 expression enhance osteolytic bone metastases of breast cancer.
    Hiraga T; Kizaka-Kondoh S; Hirota K; Hiraoka M; Yoneda T
    Cancer Res; 2007 May; 67(9):4157-63. PubMed ID: 17483326
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Adaptation of energy metabolism in breast cancer brain metastases.
    Chen EI; Hewel J; Krueger JS; Tiraby C; Weber MR; Kralli A; Becker K; Yates JR; Felding-Habermann B
    Cancer Res; 2007 Feb; 67(4):1472-86. PubMed ID: 17308085
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Proteomic analysis of chemonaive pediatric osteosarcomas and corresponding normal bone reveals multiple altered molecular targets.
    Folio C; Mora MI; Zalacain M; Corrales FJ; Segura V; Sierrasesúmaga L; Toledo G; San-Julián M; Patiño-García A
    J Proteome Res; 2009 Aug; 8(8):3882-8. PubMed ID: 19492781
    [TBL] [Abstract][Full Text] [Related]  

  • 50. CXCR4 expression in early breast cancer and risk of distant recurrence.
    Andre F; Xia W; Conforti R; Wei Y; Boulet T; Tomasic G; Spielmann M; Zoubir M; Berrada N; Arriagada R; Hortobagyi GN; Hung MC; Pusztai L; Delaloge S; Michiels S; Cristofanilli M
    Oncologist; 2009 Dec; 14(12):1182-8. PubMed ID: 19939894
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cell membrane proteomic analysis identifies proteins differentially expressed in osteotropic human breast cancer cells.
    Kischel P; Guillonneau F; Dumont B; Bellahcène A; Stresing V; Clézardin P; De Pauw EA; Castronovo V
    Neoplasia; 2008 Sep; 10(9):1014-20. PubMed ID: 18714363
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A transcriptome-proteome integrated network identifies endoplasmic reticulum thiol oxidoreductase (ERp57) as a hub that mediates bone metastasis.
    Santana-Codina N; Carretero R; Sanz-Pamplona R; Cabrera T; Guney E; Oliva B; Clezardin P; Olarte OE; Loza-Alvarez P; Méndez-Lucas A; Perales JC; Sierra A
    Mol Cell Proteomics; 2013 Aug; 12(8):2111-25. PubMed ID: 23625662
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cause and effect of microenvironmental acidosis on bone metastases.
    Avnet S; Di Pompo G; Lemma S; Baldini N
    Cancer Metastasis Rev; 2019 Jun; 38(1-2):133-147. PubMed ID: 30825056
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Transcriptomic Response to Acidosis Reveals Its Contribution to Bone Metastasis in Breast Cancer Cells.
    Yamagata AS; Freire PP; Jones Villarinho N; Teles RHG; Francisco KJM; Jaeger RG; Freitas VM
    Cells; 2022 Feb; 11(3):. PubMed ID: 35159353
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Global secretome analysis identifies novel mediators of bone metastasis.
    Blanco MA; LeRoy G; Khan Z; Alečković M; Zee BM; Garcia BA; Kang Y
    Cell Res; 2012 Sep; 22(9):1339-55. PubMed ID: 22688892
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Identification and validation of DOCK4 as a potential biomarker for risk of bone metastasis development in patients with early breast cancer.
    Westbrook JA; Wood SL; Cairns DA; McMahon K; Gahlaut R; Thygesen H; Shires M; Roberts S; Marshall H; Oliva MR; Dunning MJ; Hanby AM; Selby PJ; Speirs V; Mavria G; Coleman RE; Brown JE
    J Pathol; 2019 Mar; 247(3):381-391. PubMed ID: 30426503
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Differentially expressed and survival-related proteins of lung adenocarcinoma with bone metastasis.
    Yang M; Sun Y; Sun J; Wang Z; Zhou Y; Yao G; Gu Y; Zhang H; Zhao H
    Cancer Med; 2018 Apr; 7(4):1081-1092. PubMed ID: 29522283
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Matricellular proteins as regulators of cancer metastasis to bone.
    Trotter TN; Yang Y
    Matrix Biol; 2016; 52-54():301-314. PubMed ID: 26807761
    [TBL] [Abstract][Full Text] [Related]  

  • 59. CAPG and GIPC1: Breast Cancer Biomarkers for Bone Metastasis Development and Treatment.
    Westbrook JA; Cairns DA; Peng J; Speirs V; Hanby AM; Holen I; Wood SL; Ottewell PD; Marshall H; Banks RE; Selby PJ; Coleman RE; Brown JE
    J Natl Cancer Inst; 2016 Apr; 108(4):. PubMed ID: 26757732
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.