These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 22356820)

  • 1. Computational analysis on the mechanical interaction between a thrombus and red blood cells: possible causes of membrane damage of red blood cells at microvessels.
    Kamada H; Imai Y; Nakamura M; Ishikawa T; Yamaguchi T
    Med Eng Phys; 2012 Dec; 34(10):1411-20. PubMed ID: 22356820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanics in thrombus formation from direct cellular simulations.
    Ye T; Zhang X; Li G; Wang S
    Phys Rev E; 2020 Oct; 102(4-1):042410. PubMed ID: 33212741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Threshold of microvascular occlusion: injury size defines the thrombosis scenario.
    Belyaev AV; Panteleev MA; Ataullakhanov FI
    Biophys J; 2015 Jul; 109(2):450-6. PubMed ID: 26200881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Red Blood Cells on Platelet Activation and Thrombus Formation in Tortuous Arterioles.
    Chesnutt JK; Han HC
    Front Bioeng Biotechnol; 2013; 1():18. PubMed ID: 25022613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical Simulations of the Motion and Deformation of Three RBCs during Poiseuille Flow through a Constricted Vessel Using IB-LBM.
    Wang R; Wei Y; Wu C; Sun L; Zheng W
    Comput Math Methods Med; 2018; 2018():9425375. PubMed ID: 29681999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of red blood cell flow behavior in hemodynamics and hemostasis.
    Barshtein G; Ben-Ami R; Yedgar S
    Expert Rev Cardiovasc Ther; 2007 Jul; 5(4):743-52. PubMed ID: 17605652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mathematical modeling of thrombus growth in mesenteric vessels.
    Alenitsyn A; Kondratyev A; Mikhailova I; Siddique I
    Math Biosci; 2010 Mar; 224(1):29-34. PubMed ID: 20043925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of red blood cell deformability on hematocrit profiles and platelet margination.
    Czaja B; Gutierrez M; Závodszky G; de Kanter D; Hoekstra A; Eniola-Adefeso O
    PLoS Comput Biol; 2020 Mar; 16(3):e1007716. PubMed ID: 32163405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational study on thrombus formation regulated by platelet glycoprotein and blood flow shear.
    Kamada H; Imai Y; Nakamura M; Ishikawa T; Yamaguchi T
    Microvasc Res; 2013 Sep; 89():95-106. PubMed ID: 23743249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational analysis of nitric oxide biotransport in a microvessel influenced by red blood cells.
    Wei Y; Mu L; Tang Y; Shen Z; He Y
    Microvasc Res; 2019 Sep; 125():103878. PubMed ID: 31051161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational analysis of dynamic interaction of two red blood cells in a capillary.
    Li H; Ye T; Lam KY
    Cell Biochem Biophys; 2014 Jul; 69(3):673-80. PubMed ID: 24590262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of flowing RBCs on adhesion of a circulating tumor cell in microvessels.
    Xiao LL; Liu Y; Chen S; Fu BM
    Biomech Model Mechanobiol; 2017 Apr; 16(2):597-610. PubMed ID: 27738841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrastructural alterations in red blood cell membranes exposed to shear stress.
    Mizuno T; Tsukiya T; Taenaka Y; Tatsumi E; Nishinaka T; Ohnishi H; Oshikawa M; Sato K; Shioya K; Takewa Y; Takano H
    ASAIO J; 2002; 48(6):668-70. PubMed ID: 12455781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation of Deformation and Aggregation of Two Red Blood Cells in a Stenosed Microvessel by Dissipative Particle Dynamics.
    Xiao L; Liu Y; Chen S; Fu B
    Cell Biochem Biophys; 2016 Dec; 74(4):513-525. PubMed ID: 27704373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanics and computational simulation of blood flow in microvessels.
    Secomb TW
    Med Eng Phys; 2011 Sep; 33(7):800-4. PubMed ID: 21036096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radial dispersion of red blood cells in blood flowing through glass capillaries: the role of hematocrit and geometry.
    Lima R; Ishikawa T; Imai Y; Takeda M; Wada S; Yamaguchi T
    J Biomech; 2008 Jul; 41(10):2188-96. PubMed ID: 18589429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elevated hematocrit enhances platelet accumulation following vascular injury.
    Walton BL; Lehmann M; Skorczewski T; Holle LA; Beckman JD; Cribb JA; Mooberry MJ; Wufsus AR; Cooley BC; Homeister JW; Pawlinski R; Falvo MR; Key NS; Fogelson AL; Neeves KB; Wolberg AS
    Blood; 2017 May; 129(18):2537-2546. PubMed ID: 28251913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A continuum model for platelet transport in flowing blood based on direct numerical simulations of cellular blood flow.
    Mehrabadi M; Ku DN; Aidun CK
    Ann Biomed Eng; 2015 Jun; 43(6):1410-21. PubMed ID: 25348844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Red cell fragmentation and hemolysis in thrombotic thrombocytopenic purpura (TTP)].
    Kizaki M; Ikeda Y
    Nihon Rinsho; 1993 Jan; 51(1):117-21. PubMed ID: 8433503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of red blood cell deformation under fast shear flow for better estimation of hemolysis.
    Nakamura M; Bessho S; Wada S
    Int J Numer Method Biomed Eng; 2014 Jan; 30(1):42-54. PubMed ID: 23949912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.