These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 22357291)
1. Reductive dechlorination and mineralization of pentachlorophenol in biocathode microbial fuel cells. Huang L; Chai X; Quan X; Logan BE; Chen G Bioresour Technol; 2012 May; 111():167-74. PubMed ID: 22357291 [TBL] [Abstract][Full Text] [Related]
2. Mineralization of pentachlorophenol with enhanced degradation and power generation from air cathode microbial fuel cells. Huang L; Gan L; Wang N; Quan X; Logan BE; Chen G Biotechnol Bioeng; 2012 Sep; 109(9):2211-21. PubMed ID: 22392229 [TBL] [Abstract][Full Text] [Related]
3. Degradation of pentachlorophenol with the presence of fermentable and non-fermentable co-substrates in a microbial fuel cell. Huang L; Gan L; Zhao Q; Logan BE; Lu H; Chen G Bioresour Technol; 2011 Oct; 102(19):8762-8. PubMed ID: 21824764 [TBL] [Abstract][Full Text] [Related]
4. Enhancement of hexavalent chromium reduction and electricity production from a biocathode microbial fuel cell. Huang L; Chen J; Quan X; Yang F Bioprocess Biosyst Eng; 2010 Oct; 33(8):937-45. PubMed ID: 20217142 [TBL] [Abstract][Full Text] [Related]
5. Bioanodes/biocathodes formed at optimal potentials enhance subsequent pentachlorophenol degradation and power generation from microbial fuel cells. Huang L; Wang Q; Quan X; Liu Y; Chen G Bioelectrochemistry; 2013 Dec; 94():13-22. PubMed ID: 23747520 [TBL] [Abstract][Full Text] [Related]
6. Combined effects of enrichment procedure and non-fermentable or fermentable co-substrate on performance and bacterial community for pentachlorophenol degradation in microbial fuel cells. Wang S; Huang L; Gan L; Quan X; Li N; Chen G; Lu L; Xing D; Yang F Bioresour Technol; 2012 Sep; 120():120-6. PubMed ID: 22784962 [TBL] [Abstract][Full Text] [Related]
7. Further treatment of decolorization liquid of azo dye coupled with increased power production using microbial fuel cell equipped with an aerobic biocathode. Sun J; Bi Z; Hou B; Cao YQ; Hu YY Water Res; 2011 Jan; 45(1):283-91. PubMed ID: 20727567 [TBL] [Abstract][Full Text] [Related]
8. Enhanced wastewater treatment efficiency through microbially catalyzed oxidation and reduction: synergistic effect of biocathode microenvironment. Mohan SV; Srikanth S Bioresour Technol; 2011 Nov; 102(22):10210-20. PubMed ID: 21920735 [TBL] [Abstract][Full Text] [Related]
9. Performance and microbial diversity of microbial fuel cells coupled with different cathode types during simultaneous azo dye decolorization and electricity generation. Hou B; Hu Y; Sun J Bioresour Technol; 2012 May; 111():105-10. PubMed ID: 22386629 [TBL] [Abstract][Full Text] [Related]
10. Complete anaerobic mineralization of pentachlorophenol (PCP) under continuous flow conditions by sequential combination of PCP-dechlorinating and phenol-degrading consortia. Li Z; Yang S; Inoue Y; Yoshida N; Katayama A Biotechnol Bioeng; 2010 Dec; 107(5):775-85. PubMed ID: 20589845 [TBL] [Abstract][Full Text] [Related]
11. Successive rapid reductive dehalogenation and mineralization of pentachlorophenol by the indigenous microflora of farmyard manure compost. Jaspers CJ; Ewbank G; McCarthy AJ; Penninckx MJ J Appl Microbiol; 2002; 92(1):127-33. PubMed ID: 11849336 [TBL] [Abstract][Full Text] [Related]
12. Anaerobic mineralization of pentachlorophenol (PCP) by combining PCP-dechlorinating and phenol-degrading cultures. Yang S; Shibata A; Yoshida N; Katayama A Biotechnol Bioeng; 2009 Jan; 102(1):81-90. PubMed ID: 18683261 [TBL] [Abstract][Full Text] [Related]
13. Biostimulation of indigenous microbial communities for anaerobic transformation of pentachlorophenol in paddy soils of southern China. Chen M; Shih K; Hu M; Li F; Liu C; Wu W; Tong H J Agric Food Chem; 2012 Mar; 60(12):2967-75. PubMed ID: 22385283 [TBL] [Abstract][Full Text] [Related]
14. [14C]Pentachlorophenol mineralization in the rice rhizosphere with established oxidized and reduced soil layers. Meade T; D'Angelo EM Chemosphere; 2005 Sep; 61(1):48-55. PubMed ID: 16157169 [TBL] [Abstract][Full Text] [Related]
15. Performance of microbial fuel cell in response to change in sludge loading rate at different anodic feed pH. Behera M; Ghangrekar MM Bioresour Technol; 2009 Nov; 100(21):5114-21. PubMed ID: 19539466 [TBL] [Abstract][Full Text] [Related]
16. Mass balance and kinetic analysis of anaerobic microbial dechlorination of pentachlorophenol in a continuous flow column. Li Z; Inoue Y; Yang S; Yoshida N; Katayama A J Biosci Bioeng; 2010 Sep; 110(3):326-32. PubMed ID: 20547330 [TBL] [Abstract][Full Text] [Related]
17. Use of inexpensive semicoke and activated carbon as biocathode in microbial fuel cells. Wei J; Liang P; Cao X; Huang X Bioresour Technol; 2011 Nov; 102(22):10431-5. PubMed ID: 21924899 [TBL] [Abstract][Full Text] [Related]
18. Anaerobic/aerobic conditions and biostimulation for enhanced chlorophenols degradation in biocathode microbial fuel cells. Huang L; Shi Y; Wang N; Dong Y Biodegradation; 2014 Jul; 25(4):615-32. PubMed ID: 24902896 [TBL] [Abstract][Full Text] [Related]
19. Effect of nitrate addition on reductive transformation of pentachlorophenol in paddy soil in relation to iron(III) reduction. Yu HY; Wang YK; Chen PC; Li FB; Chen MJ; Hu M; Ouyang X J Environ Manage; 2014 Jan; 132():42-8. PubMed ID: 24286925 [TBL] [Abstract][Full Text] [Related]
20. Bioelectrochemical perchlorate reduction in a microbial fuel cell. Butler CS; Clauwaert P; Green SJ; Verstraete W; Nerenberg R Environ Sci Technol; 2010 Jun; 44(12):4685-91. PubMed ID: 20476736 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]