BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

557 related articles for article (PubMed ID: 22357292)

  • 1. Deletion of the PHO13 gene in Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysate in the presence of acetic and formic acids, and furfural.
    Fujitomi K; Sanda T; Hasunuma T; Kondo A
    Bioresour Technol; 2012 May; 111():161-6. PubMed ID: 22357292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Co-expression of TAL1 and ADH1 in recombinant xylose-fermenting Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysates in the presence of furfural.
    Hasunuma T; Ismail KSK; Nambu Y; Kondo A
    J Biosci Bioeng; 2014 Feb; 117(2):165-169. PubMed ID: 23916856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergistic effects of TAL1 over-expression and PHO13 deletion on the weak acid inhibition of xylose fermentation by industrial Saccharomyces cerevisiae strain.
    Li YC; Gou ZX; Liu ZS; Tang YQ; Akamatsu T; Kida K
    Biotechnol Lett; 2014 Oct; 36(10):2011-21. PubMed ID: 24966040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved ethanol production from xylose in the presence of acetic acid by the overexpression of the HAA1 gene in Saccharomyces cerevisiae.
    Sakihama Y; Hasunuma T; Kondo A
    J Biosci Bioeng; 2015 Mar; 119(3):297-302. PubMed ID: 25282639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains.
    Tomás-Pejó E; Oliva JM; Ballesteros M; Olsson L
    Biotechnol Bioeng; 2008 Aug; 100(6):1122-31. PubMed ID: 18383076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repeated-batch fermentation of lignocellulosic hydrolysate to ethanol using a hybrid Saccharomyces cerevisiae strain metabolically engineered for tolerance to acetic and formic acids.
    Sanda T; Hasunuma T; Matsuda F; Kondo A
    Bioresour Technol; 2011 Sep; 102(17):7917-24. PubMed ID: 21704512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of genetic background of engineered xylose-fermenting industrial Saccharomyces cerevisiae strains for ethanol production from lignocellulosic hydrolysates.
    Lopes DD; Rosa CA; Hector RE; Dien BS; Mertens JA; Ayub MAZ
    J Ind Microbiol Biotechnol; 2017 Nov; 44(11):1575-1588. PubMed ID: 28891041
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptome shifts in response to furfural and acetic acid in Saccharomyces cerevisiae.
    Li BZ; Yuan YJ
    Appl Microbiol Biotechnol; 2010 May; 86(6):1915-24. PubMed ID: 20309542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds.
    Keating JD; Panganiban C; Mansfield SD
    Biotechnol Bioeng; 2006 Apr; 93(6):1196-206. PubMed ID: 16470880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fermentation performance of engineered and evolved xylose-fermenting Saccharomyces cerevisiae strains.
    Sonderegger M; Jeppsson M; Larsson C; Gorwa-Grauslund MF; Boles E; Olsson L; Spencer-Martins I; Hahn-Hägerdal B; Sauer U
    Biotechnol Bioeng; 2004 Jul; 87(1):90-8. PubMed ID: 15211492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving Acetic Acid and Furfural Resistance of Xylose-Fermenting Saccharomyces cerevisiae Strains by Regulating Novel Transcription Factors Revealed via Comparative Transcriptomic Analysis.
    Li B; Wang L; Wu YJ; Xia ZY; Yang BX; Tang YQ
    Appl Environ Microbiol; 2021 Apr; 87(10):. PubMed ID: 33712428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptation of a recombinant xylose-utilizing Saccharomyces cerevisiae strain to a sugarcane bagasse hydrolysate with high content of fermentation inhibitors.
    Martín C; Marcet M; Almazán O; Jönsson LJ
    Bioresour Technol; 2007 Jul; 98(9):1767-73. PubMed ID: 16934451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain.
    Katahira S; Mizuike A; Fukuda H; Kondo A
    Appl Microbiol Biotechnol; 2006 Oct; 72(6):1136-43. PubMed ID: 16575564
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolomic analysis reveals key metabolites related to the rapid adaptation of Saccharomyce cerevisiae to multiple inhibitors of furfural, acetic acid, and phenol.
    Wang X; Li BZ; Ding MZ; Zhang WW; Yuan YJ
    OMICS; 2013 Mar; 17(3):150-9. PubMed ID: 23421908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review.
    Parawira W; Tekere M
    Crit Rev Biotechnol; 2011 Mar; 31(1):20-31. PubMed ID: 20513164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved inhibitor tolerance in xylose-fermenting yeast Spathaspora passalidarum by mutagenesis and protoplast fusion.
    Hou X; Yao S
    Appl Microbiol Biotechnol; 2012 Mar; 93(6):2591-601. PubMed ID: 22116630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Inhibitors and their effects on Saccharomyces cerevisiae and relevant countermeasures in bioprocess of ethanol production from lignocellulose--a review].
    Li H; Zhang X; Shen Y; Dong Y; Bao X
    Sheng Wu Gong Cheng Xue Bao; 2009 Sep; 25(9):1321-8. PubMed ID: 19938474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous utilization of cellobiose, xylose, and acetic acid from lignocellulosic biomass for biofuel production by an engineered yeast platform.
    Wei N; Oh EJ; Million G; Cate JH; Jin YS
    ACS Synth Biol; 2015 Jun; 4(6):707-13. PubMed ID: 25587748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strain construction for ethanol production from dilute-acid lignocellulosic hydrolysate.
    Yan F; Bai F; Tian S; Zhang J; Zhang Z; Yang X
    Appl Biochem Biotechnol; 2009 Jun; 157(3):473-82. PubMed ID: 18751961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ethanol fermentation from non-detoxified lignocellulose hydrolysate by a multi-stress tolerant yeast Candida glycerinogenes mutant.
    Zhao M; Shi D; Lu X; Zong H; Zhuge B; Ji H
    Bioresour Technol; 2019 Feb; 273():634-640. PubMed ID: 30502643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.