BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 22357589)

  • 1. The influence of local- and landscape-scale processes on spatial self-organization in estuarine ecosystems.
    van de Koppel J; Bouma TJ; Herman PM
    J Exp Biol; 2012 Mar; 215(Pt 6):962-7. PubMed ID: 22357589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pattern formation at multiple spatial scales drives the resilience of mussel bed ecosystems.
    Liu QX; Herman PM; Mooij WM; Huisman J; Scheffer M; Olff H; van de Koppel J
    Nat Commun; 2014 Oct; 5():5234. PubMed ID: 25335554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regular pattern formation in real ecosystems.
    Rietkerk M; van de Koppel J
    Trends Ecol Evol; 2008 Mar; 23(3):169-75. PubMed ID: 18255188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Local interactions predict large-scale pattern in empirically derived cellular automata.
    Wootton JT
    Nature; 2001 Oct; 413(6858):841-4. PubMed ID: 11677606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental evidence for spatial self-organization and its emergent effects in mussel bed ecosystems.
    van de Koppel J; Gascoigne JC; Theraulaz G; Rietkerk M; Mooij WM; Herman PM
    Science; 2008 Oct; 322(5902):739-42. PubMed ID: 18974353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mussel disturbance dynamics: signatures of oceanographic forcing from local interactions.
    Guichard F; Halpin PM; Allison GW; Lubchenco J; Menge BA
    Am Nat; 2003 Jun; 161(6):889-904. PubMed ID: 12858274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial self-organization on intertidal mudflats through biophysical stress divergence.
    Weerman EJ; van de Koppel J; Eppinga MB; Montserrat F; Liu QX; Herman PM
    Am Nat; 2010 Jul; 176(1):E15-32. PubMed ID: 20497053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scale-dependent feedback and regular spatial patterns in young mussel beds.
    van de Koppel J; Rietkerk M; Dankers N; Herman PM
    Am Nat; 2005 Mar; 165(3):E66-77. PubMed ID: 15729660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Competition landscapes: scaling up local biotic and abiotic processes in heterogeneous environments.
    Guichard FF
    Theor Popul Biol; 2004 Sep; 66(2):101-11. PubMed ID: 15302220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-organization and vegetation collapse in salt marsh ecosystems.
    van de Koppel J; van der Wal D; Bakker JP; Herman PM
    Am Nat; 2005 Jan; 165(1):E1-12. PubMed ID: 15729634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-distance interactions regulate the structure and resilience of coastal ecosystems.
    van de Koppel J; van der Heide T; Altieri AH; Eriksson BK; Bouma TJ; Olff H; Silliman BR
    Ann Rev Mar Sci; 2015; 7():139-58. PubMed ID: 25251274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase-separation physics underlies new theory for the resilience of patchy ecosystems.
    Siteur K; Liu QX; Rottschäfer V; van der Heide T; Rietkerk M; Doelman A; Boström C; van de Koppel J
    Proc Natl Acad Sci U S A; 2023 Jan; 120(2):e2202683120. PubMed ID: 36595670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase separation driven by density-dependent movement: A novel mechanism for ecological patterns.
    Liu QX; Rietkerk M; Herman PM; Piersma T; Fryxell JM; van de Koppel J
    Phys Life Rev; 2016 Dec; 19():107-121. PubMed ID: 27478087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Behavioral self-organization underlies the resilience of a coastal ecosystem.
    de Paoli H; van der Heide T; van den Berg A; Silliman BR; Herman PMJ; van de Koppel J
    Proc Natl Acad Sci U S A; 2017 Jul; 114(30):8035-8040. PubMed ID: 28696313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pattern formation in marsh ecosystems modeled through the interaction of marsh vegetation, mussels and sediment.
    Zaytseva S; Shaw LB; Shi J; Kirwan ML; Lipcius RN
    J Theor Biol; 2022 Jun; 543():111102. PubMed ID: 35341780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The shaping role of self-organization: linking vegetation patterning, plant traits and ecosystem functioning.
    Zhao LX; Xu C; Ge ZM; van de Koppel J; Liu QX
    Proc Biol Sci; 2019 Apr; 286(1900):20182859. PubMed ID: 30966990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How vegetation and sediment transport feedbacks drive landscape change in the everglades and wetlands worldwide.
    Larsen LG; Harvey JW
    Am Nat; 2010 Sep; 176(3):E66-79. PubMed ID: 20635883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From broadscale patterns to fine-scale processes: habitat structure influences genetic differentiation in the pitcher plant midge across multiple spatial scales.
    Rasic G; Keyghobadi N
    Mol Ecol; 2012 Jan; 21(2):223-36. PubMed ID: 21929541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Classic metapopulations are rare among common beetle species from a naturally fragmented landscape.
    Driscoll DA; Kirkpatrick JB; McQuillan PB; Bonham KJ
    J Anim Ecol; 2010 Jan; 79(1):294-303. PubMed ID: 19694875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for self-organization in determining spatial patterns of stream nutrients, despite primacy of the geomorphic template.
    Dong X; Ruhí A; Grimm NB
    Proc Natl Acad Sci U S A; 2017 Jun; 114(24):E4744-E4752. PubMed ID: 28559326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.