BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 22357736)

  • 1. Strain waveform dependence of stress fiber reorientation in cyclically stretched osteoblastic cells: effects of viscoelastic compression of stress fibers.
    Nagayama K; Kimura Y; Makino N; Matsumoto T
    Am J Physiol Cell Physiol; 2012 May; 302(10):C1469-78. PubMed ID: 22357736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A dynamic stochastic model of frequency-dependent stress fiber alignment induced by cyclic stretch.
    Hsu HJ; Lee CF; Kaunas R
    PLoS One; 2009; 4(3):e4853. PubMed ID: 19319193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dependence of cyclic stretch-induced stress fiber reorientation on stretch waveform.
    Tondon A; Hsu HJ; Kaunas R
    J Biomech; 2012 Mar; 45(5):728-35. PubMed ID: 22206828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of stress fiber contractility on uniaxial stretch guiding mitosis orientation and stress fiber alignment.
    Zhao L; Sang C; Yang C; Zhuang F
    J Biomech; 2011 Sep; 44(13):2388-94. PubMed ID: 21767844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Orientation of apical and basal actin stress fibers in isolated and subconfluent endothelial cells as an early response to cyclic stretching.
    Yamada H; Ando H
    Mol Cell Biomech; 2007 Mar; 4(1):1-12. PubMed ID: 17879767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyclic stretch-induced stress fiber dynamics - dependence on strain rate, Rho-kinase and MLCK.
    Lee CF; Haase C; Deguchi S; Kaunas R
    Biochem Biophys Res Commun; 2010 Oct; 401(3):344-9. PubMed ID: 20849825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A kinematic model of stretch-induced stress fiber turnover and reorientation.
    Kaunas R; Hsu HJ
    J Theor Biol; 2009 Mar; 257(2):320-30. PubMed ID: 19108781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanoadaptive organization of stress fiber subtypes in epithelial cells under cyclic stretches and stretch release.
    Roshanzadeh A; Nguyen TT; Nguyen KD; Kim DS; Lee BK; Lee DW; Kim ES
    Sci Rep; 2020 Oct; 10(1):18684. PubMed ID: 33122754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of the mechanical connection between apical stress fibers and the nucleus in vascular smooth muscle cells cultured on a substrate.
    Nagayama K; Yamazaki S; Yahiro Y; Matsumoto T
    J Biomech; 2014 Apr; 47(6):1422-9. PubMed ID: 24548337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stress fibers of the aortic smooth muscle cells in tissues do not align with the principal strain direction during intraluminal pressurization.
    Sugita S; Mizuno N; Ujihara Y; Nakamura M
    Biomech Model Mechanobiol; 2021 Jun; 20(3):1003-1011. PubMed ID: 33515313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tensile properties of single stress fibers isolated from cultured vascular smooth muscle cells.
    Deguchi S; Ohashi T; Sato M
    J Biomech; 2006; 39(14):2603-10. PubMed ID: 16216252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A mechanochemical model of cell reorientation on substrates under cyclic stretch.
    Qian J; Liu H; Lin Y; Chen W; Gao H
    PLoS One; 2013; 8(6):e65864. PubMed ID: 23762444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of single stress fiber stiffness in cultured aortic smooth muscle cells under relaxed and contracted states: Its relation to dynamic rearrangement of stress fibers.
    Nagayama K; Matsumoto T
    J Biomech; 2010 May; 43(8):1443-9. PubMed ID: 20189183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Actomyosin stress fiber subtypes have unique viscoelastic properties and roles in tension generation.
    Lee S; Kassianidou E; Kumar S
    Mol Biol Cell; 2018 Aug; 29(16):1992-2004. PubMed ID: 29927349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the effects of cyclic stretching and compression on endothelial cell morphological responses.
    Wille JJ; Ambrosi CM; Yin FC
    J Biomech Eng; 2004 Oct; 126(5):545-51. PubMed ID: 15648806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intracellular stress transmission through actin stress fiber network in adherent vascular cells.
    Deguchi S; Ohashi T; Sato M
    Mol Cell Biomech; 2005 Dec; 2(4):205-16. PubMed ID: 16705866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Viscoelastic properties of passive skeletal muscle in compression-cyclic behaviour.
    Van Loocke M; Simms CK; Lyons CG
    J Biomech; 2009 May; 42(8):1038-48. PubMed ID: 19368927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurements of strain on single stress fibers in living endothelial cells induced by fluid shear stress.
    Ueki Y; Uda Y; Sakamoto N; Sato M
    Biochem Biophys Res Commun; 2010 May; 395(3):441-6. PubMed ID: 20385099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyclic stress at mHz frequencies aligns fibroblasts in direction of zero strain.
    Faust U; Hampe N; Rubner W; Kirchgessner N; Safran S; Hoffmann B; Merkel R
    PLoS One; 2011; 6(12):e28963. PubMed ID: 22194961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic response of immature bovine articular cartilage in tension and compression, and nonlinear viscoelastic modeling of the tensile response.
    Park S; Ateshian GA
    J Biomech Eng; 2006 Aug; 128(4):623-30. PubMed ID: 16813454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.