These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 22358224)

  • 1. Quantitative measurement of quantum dot uptake at the cell population level using microfluidic evanescent-wave-based flow cytometry.
    Wang J; Zhan Y; Bao N; Lu C
    Lab Chip; 2012 Apr; 12(8):1441-5. PubMed ID: 22358224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative analysis of protein translocations by microfluidic total internal reflection fluorescence flow cytometry.
    Wang J; Fei B; Geahlen RL; Lu C
    Lab Chip; 2010 Oct; 10(20):2673-9. PubMed ID: 20820633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of quantum dot fluorescence stability in primary blood mononuclear cells.
    Summers HD; Holton MD; Rees P; Williams PM; Thornton CA
    Cytometry A; 2010 Oct; 77(10):933-9. PubMed ID: 21290467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Delivering quantum dot-peptide bioconjugates to the cellular cytosol: escaping from the endolysosomal system.
    Delehanty JB; Bradburne CE; Boeneman K; Susumu K; Farrell D; Mei BC; Blanco-Canosa JB; Dawson G; Dawson PE; Mattoussi H; Medintz IL
    Integr Biol (Camb); 2010 Jun; 2(5-6):265-77. PubMed ID: 20535418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytotoxicity of cadmium-containing quantum dots based on a study using a microfluidic chip.
    Zheng X; Tian J; Weng L; Wu L; Jin Q; Zhao J; Wang L
    Nanotechnology; 2012 Feb; 23(5):055102. PubMed ID: 22238256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The impact of different nanoparticle surface chemistry and size on uptake and toxicity in a murine macrophage cell line.
    Clift MJ; Rothen-Rutishauser B; Brown DM; Duffin R; Donaldson K; Proudfoot L; Guy K; Stone V
    Toxicol Appl Pharmacol; 2008 Nov; 232(3):418-27. PubMed ID: 18708083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic chips designed for measuring biomolecules through a microbead-based quantum dot fluorescence assay.
    Yun KS; Lee D; Kim HS; Yoon E
    Methods Mol Biol; 2009; 544():53-67. PubMed ID: 19488693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of quantum dot nanoparticle cellular uptake.
    Zhang LW; Monteiro-Riviere NA
    Toxicol Sci; 2009 Jul; 110(1):138-55. PubMed ID: 19414515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clathrin-mediated endocytosis of quantum dot-peptide conjugates in living cells.
    Anas A; Okuda T; Kawashima N; Nakayama K; Itoh T; Ishikawa M; Biju V
    ACS Nano; 2009 Aug; 3(8):2419-29. PubMed ID: 19653641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Short ligands affect modes of QD uptake and elimination in human cells.
    Al-Hajaj NA; Moquin A; Neibert KD; Soliman GM; Winnik FM; Maysinger D
    ACS Nano; 2011 Jun; 5(6):4909-18. PubMed ID: 21612298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multifunctional quantum-dot-based siRNA delivery for HPV18 E6 gene silence and intracellular imaging.
    Li JM; Zhao MX; Su H; Wang YY; Tan CP; Ji LN; Mao ZW
    Biomaterials; 2011 Nov; 32(31):7978-87. PubMed ID: 21784514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing.
    Mao X; Lin SC; Dong C; Huang TJ
    Lab Chip; 2009 Jun; 9(11):1583-9. PubMed ID: 19458866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The potential of autofluorescence for the detection of single living cells for label-free cell sorting in microfluidic systems.
    Emmelkamp J; Wolbers F; Andersson H; Dacosta RS; Wilson BC; Vermes I; van den Berg A
    Electrophoresis; 2004 Nov; 25(21-22):3740-5. PubMed ID: 15565697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-throughput and high-resolution flow cytometry in molded microfluidic devices.
    Simonnet C; Groisman A
    Anal Chem; 2006 Aug; 78(16):5653-63. PubMed ID: 16906708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silica-coated quantum dots for optical evaluation of perfluorocarbon droplet interactions with cells.
    Gorelikov I; Martin AL; Seo M; Matsuura N
    Langmuir; 2011 Dec; 27(24):15024-33. PubMed ID: 22026433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advanced optical imaging reveals the dependence of particle geometry on interactions between CdSe quantum dots and immune cells.
    Aaron JS; Greene AC; Kotula PG; Bachand GD; Timlin JA
    Small; 2011 Feb; 7(3):334-41. PubMed ID: 21294262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biotin-ligand complexes with streptavidin quantum dots for in vivo cell labeling of membrane receptors.
    Lidke DS; Nagy P; Jovin TM; Arndt-Jovin DJ
    Methods Mol Biol; 2007; 374():69-79. PubMed ID: 17237530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical coding of mammalian cells using semiconductor quantum dots.
    Mattheakis LC; Dias JM; Choi YJ; Gong J; Bruchez MP; Liu J; Wang E
    Anal Biochem; 2004 Apr; 327(2):200-8. PubMed ID: 15051536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A microfluidic device based on gravity and electric force driving for flow cytometry and fluorescence activated cell sorting.
    Yao B; Luo GA; Feng X; Wang W; Chen LX; Wang YM
    Lab Chip; 2004 Dec; 4(6):603-7. PubMed ID: 15570372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic electroporative flow cytometry for studying single-cell biomechanics.
    Bao N; Zhan Y; Lu C
    Anal Chem; 2008 Oct; 80(20):7714-9. PubMed ID: 18798650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.