These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 22358486)

  • 1. Scale up aspects of sparged insect-cell bioreactors.
    Tramper J; Vlak JM; de Gooijer CD
    Cytotechnology; 1996 Jan; 20(1-3):221-9. PubMed ID: 22358486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sparged animal cell bioreactors: mechanism of cell damage and Pluronic F-68 protection.
    Murhammer DW; Goochee CF
    Biotechnol Prog; 1990; 6(5):391-7. PubMed ID: 1366875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxygen gradients in small and big sparged insect-cell bioreactors.
    Tramper J; Vlak JM; de Gooijer CD
    Cytotechnology; 1996 Jan; 20(1-3):231-8. PubMed ID: 22358487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advances in biotreatment of acid mine drainage and biorecovery of metals: 2. Membrane bioreactor system for sulfate reduction.
    Tabak HH; Govind R
    Biodegradation; 2003 Dec; 14(6):437-52. PubMed ID: 14669874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scale-down of microalgae cultivations in tubular photo-bioreactors--a conceptual approach.
    Rosello Sastre R; Csögör Z; Perner-Nochta I; Fleck-Schneider P; Posten C
    J Biotechnol; 2007 Oct; 132(2):127-33. PubMed ID: 17561299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of cavitational reactors for water disinfection: current status and path forward.
    Gogate PR
    J Environ Manage; 2007 Dec; 85(4):801-15. PubMed ID: 17714855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Animal-cell damage in sparged bioreactors.
    Chisti Y
    Trends Biotechnol; 2000 Oct; 18(10):420-32. PubMed ID: 10998508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of insect cell based protein production processes - online monitoring, expression systems, scale up.
    Druzinec D; Salzig D; Brix A; Kraume M; Vilcinskas A; Kollewe C; Czermak P
    Adv Biochem Eng Biotechnol; 2013; 136():65-100. PubMed ID: 23995041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Orbitally shaken single-use bioreactors.
    Klöckner W; Diederichs S; Büchs J
    Adv Biochem Eng Biotechnol; 2014; 138():45-60. PubMed ID: 23604207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Homogenisation and oxygen transfer rates in large agitated and sparged animal cell bioreactors: Some implications for growth and production.
    Nienow AW; Langheinrich C; Stevenson NC; Emery AN; Clayton TM; Slater NK
    Cytotechnology; 1996 Jan; 22(1-3):87-94. PubMed ID: 22358918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Verification of energy dissipation rate scalability in pilot and production scale bioreactors using computational fluid dynamics.
    Johnson C; Natarajan V; Antoniou C
    Biotechnol Prog; 2014; 30(3):760-4. PubMed ID: 24616386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parallel reactor systems for bioprocess development.
    Weuster-Botz D
    Adv Biochem Eng Biotechnol; 2005; 92():125-43. PubMed ID: 15791935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scale-up of Escherichia coli growth and recombinant protein expression conditions from microwell to laboratory and pilot scale based on matched k(L)a.
    Islam RS; Tisi D; Levy MS; Lye GJ
    Biotechnol Bioeng; 2008 Apr; 99(5):1128-39. PubMed ID: 17969169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioreactors and bioseparation.
    Zhang S; Cao X; Chu J; Qian J; Zhuang Y
    Adv Biochem Eng Biotechnol; 2010; 122():105-50. PubMed ID: 20396995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydraulics of laboratory and full-scale upflow anaerobic sludge blanket (UASB) reactors.
    Batstone DJ; Hernandez JL; Schmidt JE
    Biotechnol Bioeng; 2005 Aug; 91(3):387-91. PubMed ID: 15977253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physical modelling of the composting environment: a review. Part 1: Reactor systems.
    Mason IG; Milke MW
    Waste Manag; 2005; 25(5):481-500. PubMed ID: 15925758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physical modelling of the composting environment: a review. Part 2: Simulation performance.
    Mason IG; Milke MW
    Waste Manag; 2005; 25(5):501-9. PubMed ID: 15925759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two stage hydrolysis of corn stover at high solids content for mixing power saving and scale-up applications.
    Liu K; Zhang J; Bao J
    Bioresour Technol; 2015 Nov; 196():716-20. PubMed ID: 26253418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High throughput in biotechnology: from shake-flasks to fully instrumented microfermentors.
    Marques MP; Cabral JM; Fernandes P
    Recent Pat Biotechnol; 2009; 3(2):124-40. PubMed ID: 19519568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the localized hydrodynamic shear forces and dissolved oxygen distribution in sparged bioreactors.
    Koynov A; Tryggvason G; Khinast JG
    Biotechnol Bioeng; 2007 Jun; 97(2):317-31. PubMed ID: 17154313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.