These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
396 related articles for article (PubMed ID: 22359152)
1. Characterization of an antifungal compound produced by Bacillus sp. strain A(5) F that inhibits Sclerotinia sclerotiorum. Kumar A; Saini S; Wray V; Nimtz M; Prakash A; Johri BN J Basic Microbiol; 2012 Dec; 52(6):670-8. PubMed ID: 22359152 [TBL] [Abstract][Full Text] [Related]
2. The plant-associated Bacillus amyloliquefaciens strains MEP2 18 and ARP2 3 capable of producing the cyclic lipopeptides iturin or surfactin and fengycin are effective in biocontrol of sclerotinia stem rot disease. Alvarez F; Castro M; Príncipe A; Borioli G; Fischer S; Mori G; Jofré E J Appl Microbiol; 2012 Jan; 112(1):159-74. PubMed ID: 22017648 [TBL] [Abstract][Full Text] [Related]
3. Cyclosporine A from a nonpathogenic Fusarium oxysporum suppressing Sclerotinia sclerotiorum. Rodríguez MA; Cabrera G; Godeas A J Appl Microbiol; 2006 Mar; 100(3):575-86. PubMed ID: 16478497 [TBL] [Abstract][Full Text] [Related]
4. Mass spectrometry identification of antifungal lipopeptides from Bacillus sp. BCLRB2 against Rhizoctonia solani and Sclerotinia sclerotiorum. Elkahoui S; Djébali N; Karkouch I; Ibrahim AH; Kalai L; Bachkovel S; Tabbene O; Limam F Prikl Biokhim Mikrobiol; 2014; 50(2):184-8. PubMed ID: 25272736 [TBL] [Abstract][Full Text] [Related]
5. Identification and structure elucidation of a novel antifungal compound produced by Pseudomonas aeruginosa PGPR2 against Macrophomina phaseolina. Illakkiam D; Ponraj P; Shankar M; Muthusubramanian S; Rajendhran J; Gunasekaran P Appl Biochem Biotechnol; 2013 Dec; 171(8):2176-85. PubMed ID: 24037513 [TBL] [Abstract][Full Text] [Related]
6. Antagonistic effects of Bacillus subtilis subsp. subtilis and B. amyloliquefaciens against Macrophomina phaseolina: SEM study of fungal changes and UV-MALDI-TOF MS analysis of their bioactive compounds. Torres MJ; Brandan CP; Petroselli G; Erra-Balsells R; Audisio MC Microbiol Res; 2016 Jan; 182():31-9. PubMed ID: 26686611 [TBL] [Abstract][Full Text] [Related]
7. Isolation and identification of allelochemicals produced by B. sonorensis for suppression of charcoal rot of Arachis hypogaea L. Pandya U; Saraf M J Basic Microbiol; 2015 May; 55(5):635-44. PubMed ID: 25346523 [TBL] [Abstract][Full Text] [Related]
8. Biocontrol and plant stimulating potential of novel strain Bacillus sp. PPM3 isolated from marine sediment. Radovanović N; Milutinović M; Mihajlovski K; Jović J; Nastasijević B; Rajilić-Stojanović M; Dimitrijević-Branković S Microb Pathog; 2018 Jul; 120():71-78. PubMed ID: 29709685 [TBL] [Abstract][Full Text] [Related]
9. Antagonistic Activities of Novel Peptides from Bacillus amyloliquefaciens PT14 against Fusarium solani and Fusarium oxysporum. Kim YG; Kang HK; Kwon KD; Seo CH; Lee HB; Park Y J Agric Food Chem; 2015 Dec; 63(48):10380-7. PubMed ID: 26496638 [TBL] [Abstract][Full Text] [Related]
10. Suppression of maize root diseases caused by Macrophomina phaseolina, Fusarium moniliforme and Fusarium graminearum by plant growth promoting rhizobacteria. Pal KK; Tilak KV; Saxena AK; Dey R; Singh CS Microbiol Res; 2001; 156(3):209-23. PubMed ID: 11716210 [TBL] [Abstract][Full Text] [Related]
11. Molecular and biochemical detection of fengycin- and bacillomycin D-producing Bacillus spp., antagonistic to fungal pathogens of canola and wheat. Ramarathnam R; Bo S; Chen Y; Fernando WG; Xuewen G; de Kievit T Can J Microbiol; 2007 Jul; 53(7):901-11. PubMed ID: 17898845 [TBL] [Abstract][Full Text] [Related]
12. Bacillus amyloliquefaciens Q-426 as a potential biocontrol agent against Fusarium oxysporum f. sp. spinaciae. Zhao P; Quan C; Wang Y; Wang J; Fan S J Basic Microbiol; 2014 May; 54(5):448-56. PubMed ID: 23553741 [TBL] [Abstract][Full Text] [Related]
13. Volatile Compounds of Endophytic Bacillus spp. have Biocontrol Activity Against Sclerotinia sclerotiorum. Massawe VC; Hanif A; Farzand A; Mburu DK; Ochola SO; Wu L; Tahir HAS; Gu Q; Wu H; Gao X Phytopathology; 2018 Dec; 108(12):1373-1385. PubMed ID: 29927356 [TBL] [Abstract][Full Text] [Related]
14. Isolation of anteiso-C17, iso-C17, iso-C16, and iso-C15 bacillomycin D from Bacillus amyloliquefaciens SD-32 and their antifungal activities against plant pathogens. Tanaka K; Ishihara A; Nakajima H J Agric Food Chem; 2014 Feb; 62(7):1469-76. PubMed ID: 24548079 [TBL] [Abstract][Full Text] [Related]
16. Antifungal screening of endophytic fungi from Ginkgo biloba for discovery of potent anti-phytopathogenic fungicides. Xiao Y; Li HX; Li C; Wang JX; Li J; Wang MH; Ye YH FEMS Microbiol Lett; 2013 Feb; 339(2):130-6. PubMed ID: 23240805 [TBL] [Abstract][Full Text] [Related]
17. Antagonistic activity and mechanism of an isolated Streptomyces corchorusii stain AUH-1 against phytopathogenic fungi. Yang Y; Zhang SW; Li KT World J Microbiol Biotechnol; 2019 Sep; 35(9):145. PubMed ID: 31493267 [TBL] [Abstract][Full Text] [Related]
18. Identification of antifungal antibiotics of Bacillus species isolated from different microhabitats using polymerase chain reaction and MALDI-TOF mass spectrometry. Athukorala SN; Fernando WG; Rashid KY Can J Microbiol; 2009 Sep; 55(9):1021-32. PubMed ID: 19898544 [TBL] [Abstract][Full Text] [Related]
19. Antagonistic effects of Streptomyces violaceusniger strain G10 on Fusarium oxysporum f.sp. cubense race 4: indirect evidence for the role of antibiosis in the antagonistic process. Getha K; Vikineswary S J Ind Microbiol Biotechnol; 2002 Jun; 28(6):303-10. PubMed ID: 12032802 [TBL] [Abstract][Full Text] [Related]
20. The ultrasound-assisted extraction and identification of antifungal substances from B. amyloliquefaciens strain NJN-6 suppressing Fusarium oxysporum. Yuan J; Raza W; Huang Q; Shen Q J Basic Microbiol; 2012 Dec; 52(6):721-30. PubMed ID: 22581589 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]