These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 22359736)

  • 1. Spatio-temporal dynamics of a fish spawning aggregation and its fishery in the Gulf of California.
    Erisman B; Aburto-Oropeza O; Gonzalez-Abraham C; Mascareñas-Osorio I; Moreno-Báez M; Hastings PA
    Sci Rep; 2012; 2():284. PubMed ID: 22359736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spawning aggregations of checkered snapper (
    Nanami A
    PeerJ; 2023; 11():e15991. PubMed ID: 38077430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Historical spatial reconstruction of a spawning-aggregation fishery.
    Buckley SM; Thurstan RH; Tobin A; Pandolfi JM
    Conserv Biol; 2017 Dec; 31(6):1322-1332. PubMed ID: 28370319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A global baseline for spawning aggregations of reef fishes.
    Sadovy De Mitcheson Y; Cornish A; Domeier M; Colin PL; Russell M; Lindeman KC
    Conserv Biol; 2008 Oct; 22(5):1233-44. PubMed ID: 18717693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. When is spillover from marine reserves likely to benefit fisheries?
    Buxton CD; Hartmann K; Kearney R; Gardner C
    PLoS One; 2014; 9(9):e107032. PubMed ID: 25188380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Small-scale spatial variation in population dynamics and fishermen response in a coastal marine fishery.
    Wilson JR; Kay MC; Colgate J; Qi R; Lenihan HS
    PLoS One; 2012; 7(12):e52837. PubMed ID: 23300793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A stakeholder-engaged approach to evaluating spawning aggregation management as a strategy for conserving bonefish (
    Ostrega M; Adams AJ; Pina-Amargós F; Cooke SJ; Bailey M
    Environ Biol Fishes; 2023; 106(2):161-179. PubMed ID: 36310851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The importance of spawning behavior in understanding the vulnerability of exploited marine fishes in the U.S. Gulf of Mexico.
    Biggs CR; Heyman WD; Farmer NA; Kobara S; Bolser DG; Robinson J; Lowerre-Barbieri SK; Erisman BE
    PeerJ; 2021; 9():e11814. PubMed ID: 34395076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regional differences in fishing behavior determine whether a marine reserve network enhances fishery yield.
    Lenihan HS; Reed DC; Vigo M; Leiphardt C; Hofmiester JKK; Gallagher JP; Voss C; Moore P; Miller RJ
    Sci Rep; 2024 Jan; 14(1):1242. PubMed ID: 38216603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fishing the line near marine reserves in single and multispecies fisheries.
    Kellner JB; Tetreault I; Gaines SD; Nisbet RM
    Ecol Appl; 2007 Jun; 17(4):1039-54. PubMed ID: 17555217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spawning site selection and contingent behavior in Common Snook, Centropomus undecimalis.
    Lowerre-Barbieri S; Villegas-Ríos D; Walters S; Bickford J; Cooper W; Muller R; Trotter A
    PLoS One; 2014; 9(7):e101809. PubMed ID: 24999986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergistic Effects of Marine Reserves and Harvest Controls on the Abundance and Catch Dynamics of a Coral Reef Fishery.
    Hopf JK; Jones GP; Williamson DH; Connolly SR
    Curr Biol; 2016 Jun; 26(12):1543-1548. PubMed ID: 27185553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. European smelt Osmerus eperlanus in the eastern Gulf of Finland, Baltic Sea: Stock status and fishery.
    Sendek DS; Bogdanov DV
    J Fish Biol; 2019 Jun; 94(6):1001-1010. PubMed ID: 31087333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial variation in the effects of size and age on reproductive dynamics of common coral trout Plectropomus leopardus.
    Carter AB; Russ GR; Tobin AJ; Williams AJ; Davies CR; Mapstone BD
    J Fish Biol; 2014 Apr; 84(4):1074-98. PubMed ID: 24641275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Geolocated fish spawning habitats.
    Oremus KL; Rising J; Ramesh N; Ostroski AJ
    Sci Data; 2024 May; 11(1):521. PubMed ID: 38778024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantifying the squeezing or stretching of fisheries as they adapt to displacement by marine reserves.
    Chollett I; Box SJ; Mumby PJ
    Conserv Biol; 2016 Feb; 30(1):166-75. PubMed ID: 26096358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the optimal size of marine reserves.
    Bensenane M; Moussaoui A; Auger P
    Acta Biotheor; 2013 Mar; 61(1):109-18. PubMed ID: 23381499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fishing-induced changes in adult length are mediated by skipped-spawning.
    Wang HY; Chen YS; Hsu CC; Shen SF
    Ecol Appl; 2017 Jan; 27(1):274-284. PubMed ID: 28052500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling spawning dates of Hucho taimen in Mongolia to establish fishery management zones.
    Vander Zanden MJ; Joppa LN; Allen BC; Chandra S; Gilroy D; Hogan Z; Maxted JT; Zhu J
    Ecol Appl; 2007 Dec; 17(8):2281-9. PubMed ID: 18213968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Connectivity of a large embayment and coastal fishery: spawning aggregations in one bay source local and broad-scale fishery replenishment.
    Hamer PA; Acevedo S; Jenkins GP; Newman A
    J Fish Biol; 2011 Apr; 78(4):1090-109. PubMed ID: 21463309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.