BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 22360165)

  • 1. A neural network potential-energy surface for the water dimer based on environment-dependent atomic energies and charges.
    Morawietz T; Sharma V; Behler J
    J Chem Phys; 2012 Feb; 136(6):064103. PubMed ID: 22360165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction of high-dimensional neural network potentials using environment-dependent atom pairs.
    Jose KV; Artrith N; Behler J
    J Chem Phys; 2012 May; 136(19):194111. PubMed ID: 22612084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A density-functional theory-based neural network potential for water clusters including van der Waals corrections.
    Morawietz T; Behler J
    J Phys Chem A; 2013 Aug; 117(32):7356-66. PubMed ID: 23557541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Representing the potential-energy surface of protonated water clusters by high-dimensional neural network potentials.
    Kondati Natarajan S; Morawietz T; Behler J
    Phys Chem Chem Phys; 2015 Apr; 17(13):8356-71. PubMed ID: 25436835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural network potential-energy surfaces in chemistry: a tool for large-scale simulations.
    Behler J
    Phys Chem Chem Phys; 2011 Oct; 13(40):17930-55. PubMed ID: 21915403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Constructing simple yet accurate potentials for describing the solvation of HCl/water clusters in bulk helium and nanodroplets.
    Boese AD; Forbert H; Masia M; Tekin A; Marx D; Jansen G
    Phys Chem Chem Phys; 2011 Aug; 13(32):14550-64. PubMed ID: 21687854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Full-dimensional, ab initio potential energy and dipole moment surfaces for water.
    Wang Y; Shepler BC; Braams BJ; Bowman JM
    J Chem Phys; 2009 Aug; 131(5):054511. PubMed ID: 19673578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reaction path potential for complex systems derived from combined ab initio quantum mechanical and molecular mechanical calculations.
    Lu Z; Yang W
    J Chem Phys; 2004 Jul; 121(1):89-100. PubMed ID: 15260525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atom-centered symmetry functions for constructing high-dimensional neural network potentials.
    Behler J
    J Chem Phys; 2011 Feb; 134(7):074106. PubMed ID: 21341827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Full dimensional (15-dimensional) quantum-dynamical simulation of the protonated water-dimer III: Mixed Jacobi-valence parametrization and benchmark results for the zero point energy, vibrationally excited states, and infrared spectrum.
    Vendrell O; Brill M; Gatti F; Lauvergnat D; Meyer HD
    J Chem Phys; 2009 Jun; 130(23):234305. PubMed ID: 19548725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal construction of a fast and accurate polarisable water potential based on multipole moments trained by machine learning.
    Handley CM; Hawe GI; Kell DB; Popelier PL
    Phys Chem Chem Phys; 2009 Aug; 11(30):6365-76. PubMed ID: 19809668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photochemistry of the water dimer: time-dependent quantum wave-packet description of the dynamics at the S1-S0 conical intersection.
    Chmura B; Lan Z; Rode MF; Sobolewski AL
    J Chem Phys; 2009 Oct; 131(13):134307. PubMed ID: 19814553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential energy surface for cyclotrimethylene trinitramine dimer from symmetry-adapted perturbation theory.
    Podeszwa R; Bukowski R; Rice BM; Szalewicz K
    Phys Chem Chem Phys; 2007 Nov; 9(41):5561-9. PubMed ID: 17957312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights into the ultraviolet spectrum of liquid water from model calculations.
    Cabral do Couto P; Chipman DM
    J Chem Phys; 2010 Jun; 132(24):244307. PubMed ID: 20590193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Free energy perturbation study of water dimer dissociation kinetics.
    Ming Y; Lai G; Tong C; Wood RH; Doren DJ
    J Chem Phys; 2004 Jul; 121(2):773-7. PubMed ID: 15260604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The self-consistent charge density functional tight binding method applied to liquid water and the hydrated excess proton: benchmark simulations.
    Maupin CM; Aradi B; Voth GA
    J Phys Chem B; 2010 May; 114(20):6922-31. PubMed ID: 20426461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissociation energy of the water dimer from quantum Monte Carlo calculations.
    Gurtubay IG; Needs RJ
    J Chem Phys; 2007 Sep; 127(12):124306. PubMed ID: 17902902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward a new approach for determination of solute's charge distribution to analyze interatomic electrostatic interactions in quantum mechanical/molecular mechanical simulations.
    Yamada K; Koyano Y; Okamoto T; Asada T; Koga N; Nagaoka M
    J Comput Chem; 2011 Nov; 32(14):3092-104. PubMed ID: 21815177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How dependent are molecular and atomic properties on the electronic structure method? Comparison of Hartree-Fock, DFT, and MP2 on a biologically relevant set of molecules.
    Matta CF
    J Comput Chem; 2010 Apr; 31(6):1297-311. PubMed ID: 19882732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and dynamics of the hydration shells of the Zn(2+) ion from ab initio molecular dynamics and combined ab initio and classical molecular dynamics simulations.
    Cauët E; Bogatko S; Weare JH; Fulton JL; Schenter GK; Bylaska EJ
    J Chem Phys; 2010 May; 132(19):194502. PubMed ID: 20499974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.