BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 22360206)

  • 21. Thermodynamic, diffusional, and structural anomalies in rigid-body water models.
    Agarwal M; Alam MP; Chakravarty C
    J Phys Chem B; 2011 Jun; 115(21):6935-45. PubMed ID: 21553909
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of Tetrahedral Order, Liquid State Anomalies, and Hydration Behavior of mTIP3P and TIP4P Water Models.
    Nayar D; Agarwal M; Chakravarty C
    J Chem Theory Comput; 2011 Oct; 7(10):3354-67. PubMed ID: 26598167
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Extraction of Dielectric Permittivity from Atomistic Molecular Dynamics Simulations and Microwave Measurements.
    Saad-Falcon A; Zhang Z; Ryoo D; Dee J; Westafer RS; Gumbart JC
    J Phys Chem B; 2022 Oct; 126(40):8021-8029. PubMed ID: 36171073
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A reoptimization of the five-site water potential (TIP5P) for use with Ewald sums.
    Rick SW
    J Chem Phys; 2004 Apr; 120(13):6085-93. PubMed ID: 15267492
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Estimation of Solvation Entropy and Enthalpy via Analysis of Water Oxygen-Hydrogen Correlations.
    Velez-Vega C; McKay DJ; Kurtzman T; Aravamuthan V; Pearlstein RA; Duca JS
    J Chem Theory Comput; 2015 Nov; 11(11):5090-102. PubMed ID: 26574307
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Solvation theory to provide a molecular interpretation of the hydrophobic entropy loss of noble-gas hydration.
    Irudayam SJ; Henchman RH
    J Phys Condens Matter; 2010 Jul; 22(28):284108. PubMed ID: 21399280
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Solvation free energies of amino acid side chain analogs for common molecular mechanics water models.
    Shirts MR; Pande VS
    J Chem Phys; 2005 Apr; 122(13):134508. PubMed ID: 15847482
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On the absolute thermodynamics of water from computer simulations: a comparison of first-principles molecular dynamics, reactive and empirical force fields.
    Pascal TA; Schärf D; Jung Y; Kühne TD
    J Chem Phys; 2012 Dec; 137(24):244507. PubMed ID: 23277945
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Properties of liquid water from a systematic refinement of a high-rank multipolar electrostatic potential.
    Shaik MS; Liem SY; Popelier PL
    J Chem Phys; 2010 May; 132(17):174504. PubMed ID: 20459171
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Radial distribution functions and densities for the SPC/E, TIP4P and TIP5P models for liquid water and ices Ih, Ic, II, III, IV, V, VI, VII, VIII, IX, XI and XII.
    Vega C; McBride C; Sanz E; Abascal JL
    Phys Chem Chem Phys; 2005 Apr; 7(7):1450-6. PubMed ID: 19787967
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hydrogen Bonding and Related Properties in Liquid Water: A Car-Parrinello Molecular Dynamics Simulation Study.
    Guardia E; Skarmoutsos I; Masia M
    J Phys Chem B; 2015 Jul; 119(29):8926-38. PubMed ID: 25313871
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Toward a molecular dynamics force field for simulations of 40% trifluoroethanol-water.
    Gerig JT
    J Phys Chem B; 2014 Feb; 118(6):1471-80. PubMed ID: 24460479
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Topological hydrogen-bond definition to characterize the structure and dynamics of liquid water.
    Henchman RH; Irudayam SJ
    J Phys Chem B; 2010 Dec; 114(50):16792-810. PubMed ID: 21114302
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hydration free energies of monovalent ions in transferable intermolecular potential four point fluctuating charge water: an assessment of simulation methodology and force field performance and transferability.
    Warren GL; Patel S
    J Chem Phys; 2007 Aug; 127(6):064509. PubMed ID: 17705614
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Six-site polarizable model of water based on the classical Drude oscillator.
    Yu W; Lopes PE; Roux B; MacKerell AD
    J Chem Phys; 2013 Jan; 138(3):034508. PubMed ID: 23343286
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Water structure-forming capabilities are temperature shifted for different models.
    Shevchuk R; Prada-Gracia D; Rao F
    J Phys Chem B; 2012 Jun; 116(25):7538-43. PubMed ID: 22651887
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Coarse-Graining of TIP4P/2005, TIP4P-Ew, SPC/E, and TIP3P to Monatomic Anisotropic Water Models Using Relative Entropy Minimization.
    Lu J; Qiu Y; Baron R; Molinero V
    J Chem Theory Comput; 2014 Sep; 10(9):4104-20. PubMed ID: 26588552
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Explicit Water Models Affect the Specific Solvation and Dynamics of Unfolded Peptides While the Conformational Behavior and Flexibility of Folded Peptides Remain Intact.
    Florová P; Sklenovský P; Banáš P; Otyepka M
    J Chem Theory Comput; 2010 Nov; 6(11):3569-79. PubMed ID: 26617103
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Entropy from Correlations in TIP4P Water.
    Giuffré E; Prestipino S; Saija F; Saitta AM; Giaquinta PV
    J Chem Theory Comput; 2010 Mar; 6(3):625-36. PubMed ID: 26613296
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Why Computed Protein Folding Landscapes Are Sensitive to the Water Model.
    Anandakrishnan R; Izadi S; Onufriev AV
    J Chem Theory Comput; 2019 Jan; 15(1):625-636. PubMed ID: 30514080
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.