These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 22360206)

  • 41. Classical and quantum mechanical/molecular mechanical molecular dynamics simulations of alanine dipeptide in water: comparisons with IR and vibrational circular dichroism spectra.
    Kwac K; Lee KK; Han JB; Oh KI; Cho M
    J Chem Phys; 2008 Mar; 128(10):105106. PubMed ID: 18345930
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Why different water models predict different structures under 2D confinement.
    Dix J; Lue L; Carbone P
    J Comput Chem; 2018 Sep; 39(25):2051-2059. PubMed ID: 30226923
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hydration structure in concentrated aqueous lithium chloride solutions: a reverse Monte Carlo based combination of molecular dynamics simulations and diffraction data.
    Harsányi I; Pusztai L
    J Chem Phys; 2012 Nov; 137(20):204503. PubMed ID: 23206015
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Predicting octanol/water partition coefficients using molecular simulation for the SAMPL7 challenge: comparing the use of neat and water saturated 1-octanol.
    Sabatino SJ; Paluch AS
    J Comput Aided Mol Des; 2021 Oct; 35(10):1009-1024. PubMed ID: 34495430
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The influence of water potential in simulation: a catabolite activator protein case study.
    Liem SY; Popelier PLA
    J Mol Model; 2019 Jul; 25(8):216. PubMed ID: 31292786
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Molecular Dynamics Simulations of Proteins:  Can the Explicit Water Model Be Varied?
    Nutt DR; Smith JC
    J Chem Theory Comput; 2007 Jul; 3(4):1550-60. PubMed ID: 26633225
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The hydrogen bond network structure within the hydration shell around simple osmolytes: urea, tetramethylurea, and trimethylamine-N-oxide, investigated using both a fixed charge and a polarizable water model.
    Kuffel A; Zielkiewicz J
    J Chem Phys; 2010 Jul; 133(3):035102. PubMed ID: 20649360
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Common features of orientational order at the temperature of maximum density for various water models: molecular dynamics study.
    Jhon YI; No KT; Jhon MS
    J Phys Chem B; 2007 Aug; 111(33):9897-9. PubMed ID: 17672501
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Free energies and entropies of water molecules at the inhibitor-protein interface of DNA gyrase.
    Yu H; Rick SW
    J Am Chem Soc; 2009 May; 131(18):6608-13. PubMed ID: 19374378
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Two-phase thermodynamic model for efficient and accurate absolute entropy of water from molecular dynamics simulations.
    Lin ST; Maiti PK; Goddard WA
    J Phys Chem B; 2010 Jun; 114(24):8191-8. PubMed ID: 20504009
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Hydrogen bond strength and network structure effects on hydration of non-polar molecules.
    Lynden-Bell RM; Giovambattista N; Debenedetti PG; Head-Gordon T; Rossky PJ
    Phys Chem Chem Phys; 2011 Feb; 13(7):2748-57. PubMed ID: 21152590
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The melting temperature of the most common models of water.
    Vega C; Sanz E; Abascal JL
    J Chem Phys; 2005 Mar; 122(11):114507. PubMed ID: 15836229
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Dielectric constant of ices and water: a lesson about water interactions.
    Aragones JL; MacDowell LG; Vega C
    J Phys Chem A; 2011 Jun; 115(23):5745-58. PubMed ID: 20866096
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The SAMPL5 host-guest challenge: computing binding free energies and enthalpies from explicit solvent simulations by the attach-pull-release (APR) method.
    Yin J; Henriksen NM; Slochower DR; Gilson MK
    J Comput Aided Mol Des; 2017 Jan; 31(1):133-145. PubMed ID: 27638809
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Solubility of cellulose in supercritical water studied by molecular dynamics simulations.
    Tolonen LK; Bergenstråhle-Wohlert M; Sixta H; Wohlert J
    J Phys Chem B; 2015 Apr; 119(13):4739-48. PubMed ID: 25756596
    [TBL] [Abstract][Full Text] [Related]  

  • 56. 2D-Raman-THz spectroscopy: a sensitive test of polarizable water models.
    Hamm P
    J Chem Phys; 2014 Nov; 141(18):184201. PubMed ID: 25399140
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Local order, energy, and mobility of water molecules in the hydration shell of small peptides.
    Agarwal M; Kushwaha HR; Chakravarty C
    J Phys Chem B; 2010 Jan; 114(1):651-9. PubMed ID: 19863091
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Computer simulation of two new solid phases of water: Ice XIII and ice XIV.
    Martin-Conde M; MacDowell LG; Vega C
    J Chem Phys; 2006 Sep; 125(11):116101. PubMed ID: 16999507
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Metadynamics as a tool for mapping the conformational and free-energy space of peptides--the alanine dipeptide case study.
    Vymetal J; Vondrásek J
    J Phys Chem B; 2010 Apr; 114(16):5632-42. PubMed ID: 20361773
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hydrogen bonds in membrane proteins.
    Sheu SY; Schlag EW; Selzle HL; Yang DY
    J Phys Chem B; 2009 Apr; 113(15):5318-26. PubMed ID: 19354309
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.