These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 22360209)

  • 1. The role of surface defects in multi-exciton generation of lead selenide and silicon semiconductor quantum dots.
    Jaeger HM; Fischer S; Prezhdo OV
    J Chem Phys; 2012 Feb; 136(6):064701. PubMed ID: 22360209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple exciton generation and recombination dynamics in small Si and CdSe quantum dots: an ab initio time-domain study.
    Hyeon-Deuk K; Prezhdo OV
    ACS Nano; 2012 Feb; 6(2):1239-50. PubMed ID: 22214339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exciton multiplication from first principles.
    Jaeger HM; Hyeon-Deuk K; Prezhdo OV
    Acc Chem Res; 2013 Jun; 46(6):1280-9. PubMed ID: 23459543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell.
    Semonin OE; Luther JM; Choi S; Chen HY; Gao J; Nozik AJ; Beard MC
    Science; 2011 Dec; 334(6062):1530-3. PubMed ID: 22174246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Third generation photovoltaics based on multiple exciton generation in quantum confined semiconductors.
    Beard MC; Luther JM; Semonin OE; Nozik AJ
    Acc Chem Res; 2013 Jun; 46(6):1252-60. PubMed ID: 23113604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple exciton generation in colloidal silicon nanocrystals.
    Beard MC; Knutsen KP; Yu P; Luther JM; Song Q; Metzger WK; Ellingson RJ; Nozik AJ
    Nano Lett; 2007 Aug; 7(8):2506-12. PubMed ID: 17645368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Charge-transfer excitons at organic semiconductor surfaces and interfaces.
    Zhu XY; Yang Q; Muntwiler M
    Acc Chem Res; 2009 Nov; 42(11):1779-87. PubMed ID: 19378979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoinduced dynamics in semiconductor quantum dots: insights from time-domain ab initio studies.
    Prezhdo OV
    Acc Chem Res; 2009 Dec; 42(12):2005-16. PubMed ID: 19888715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. False multiple exciton recombination and multiple exciton generation signals in semiconductor quantum dots arise from surface charge trapping.
    Tyagi P; Kambhampati P
    J Chem Phys; 2011 Mar; 134(9):094706. PubMed ID: 21384996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple exciton generation and recombination in carbon nanotubes and nanocrystals.
    Kanemitsu Y
    Acc Chem Res; 2013 Jun; 46(6):1358-66. PubMed ID: 23421584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoexcited electron and hole dynamics in semiconductor quantum dots: phonon-induced relaxation, dephasing, multiple exciton generation and recombination.
    Hyeon-Deuk K; Prezhdo OV
    J Phys Condens Matter; 2012 Sep; 24(36):363201. PubMed ID: 22906924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface states in the photoionization of high-quality CdSe core/shell nanocrystals.
    Li S; Steigerwald ML; Brus LE
    ACS Nano; 2009 May; 3(5):1267-73. PubMed ID: 19374391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exciton multiplication and relaxation dynamics in quantum dots: applications to ultrahigh-efficiency solar photon conversion.
    Nozik AJ
    Inorg Chem; 2005 Oct; 44(20):6893-9. PubMed ID: 16180844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple Exciton Generation in Semiconductor Quantum Dots.
    Beard MC
    J Phys Chem Lett; 2011 Jun; 2(11):1282-8. PubMed ID: 26295422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phonon-induced dephasing of excitons in semiconductor quantum dots: multiple exciton generation, fission, and luminescence.
    Madrid AB; Hyeon-Deuk K; Habenicht BF; Prezhdo OV
    ACS Nano; 2009 Sep; 3(9):2487-94. PubMed ID: 19722505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple exciton collection in a sensitized photovoltaic system.
    Sambur JB; Novet T; Parkinson BA
    Science; 2010 Oct; 330(6000):63-6. PubMed ID: 20929804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient exciton transport between strongly quantum-confined silicon quantum dots.
    Lin Z; Li H; Franceschetti A; Lusk MT
    ACS Nano; 2012 May; 6(5):4029-38. PubMed ID: 22468899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiexciton annihilation and dissociation in quantum confined semiconductor nanocrystals.
    Zhu H; Yang Y; Lian T
    Acc Chem Res; 2013 Jun; 46(6):1270-9. PubMed ID: 23148478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unconventional gap state of trapped exciton in lead sulfide quantum dots.
    Lewis JE; Wu S; Jiang XJ
    Nanotechnology; 2010 Nov; 21(45):455402. PubMed ID: 20947935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms for photogeneration and recombination of multiexcitons in semiconductor nanocrystals: implications for lasing and solar energy conversion.
    Klimov VI
    J Phys Chem B; 2006 Aug; 110(34):16827-45. PubMed ID: 16927970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.