These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 22360209)

  • 21. Colloidal quantum-dot photodetectors exploiting multiexciton generation.
    Sukhovatkin V; Hinds S; Brzozowski L; Sargent EH
    Science; 2009 Jun; 324(5934):1542-4. PubMed ID: 19541992
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Surface ligands increase photoexcitation relaxation rates in CdSe quantum dots.
    Kilina S; Velizhanin KA; Ivanov S; Prezhdo OV; Tretiak S
    ACS Nano; 2012 Jul; 6(7):6515-24. PubMed ID: 22742432
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Direct mapping of hot-electron relaxation and multiplication dynamics in PbSe quantum dots.
    Miaja-Avila L; Tritsch JR; Wolcott A; Chan WL; Nelson CA; Zhu XY
    Nano Lett; 2012 Mar; 12(3):1588-91. PubMed ID: 22335631
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The surface termination effect on the quantum confinement and electron affinities of 3C-SiC quantum dots: a first-principles study.
    Zhang Z; Dai Y; Yu L; Guo M; Huang B; Whangbo MH
    Nanoscale; 2012 Mar; 4(5):1592-7. PubMed ID: 22294210
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dye-Sensitized Multiple Exciton Generation in Lead Sulfide Quantum Dots.
    Huang Z; Beard MC
    J Am Chem Soc; 2022 Aug; 144(34):15855-15861. PubMed ID: 35981268
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Low threshold and efficient multiple exciton generation in halide perovskite nanocrystals.
    Li M; Begum R; Fu J; Xu Q; Koh TM; Veldhuis SA; Grätzel M; Mathews N; Mhaisalkar S; Sum TC
    Nat Commun; 2018 Oct; 9(1):4197. PubMed ID: 30305633
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Single-exciton optical gain in semiconductor nanocrystals.
    Klimov VI; Ivanov SA; Nanda J; Achermann M; Bezel I; McGuire JA; Piryatinski A
    Nature; 2007 May; 447(7143):441-6. PubMed ID: 17522678
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Exciton-exciton correlations revealed by two-quantum, two-dimensional fourier transform optical spectroscopy.
    Stone KW; Turner DB; Gundogdu K; Cundiff ST; Nelson KA
    Acc Chem Res; 2009 Sep; 42(9):1452-61. PubMed ID: 19691277
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Theory of alkyl-terminated silicon quantum dots.
    Reboredo FA; Galli G
    J Phys Chem B; 2005 Jan; 109(3):1072-8. PubMed ID: 16851062
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhanced multiple exciton dissociation from CdSe quantum rods: the effect of nanocrystal shape.
    Zhu H; Lian T
    J Am Chem Soc; 2012 Jul; 134(27):11289-97. PubMed ID: 22702343
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Surface effects on capped and uncapped nanocrystals.
    Bryant GW; Jaskolski W
    J Phys Chem B; 2005 Oct; 109(42):19650-6. PubMed ID: 16853541
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multiexciton absorption and multiple exciton generation in CdSe quantum dots.
    Franceschetti A; Zhang Y
    Phys Rev Lett; 2008 Apr; 100(13):136805. PubMed ID: 18517985
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Equation-of-motion coupled-cluster study on exciton states of polyethylene with periodic boundary condition.
    Katagiri H
    J Chem Phys; 2005 Jun; 122(22):224901. PubMed ID: 15974710
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Size-dependent valence and conduction band-edge energies of semiconductor nanocrystals.
    Jasieniak J; Califano M; Watkins SE
    ACS Nano; 2011 Jul; 5(7):5888-902. PubMed ID: 21662980
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantum dot networks in dielectric media: from compact modeling of transport to the origin of field effect luminescence.
    Carreras J; Jambois O; Lombardo S; Garrido B
    Nanotechnology; 2009 Apr; 20(15):155201. PubMed ID: 19420540
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multiple exciton generation in nanocrystal quantum dots--controversy, current status and future prospects.
    Binks DJ
    Phys Chem Chem Phys; 2011 Jul; 13(28):12693-704. PubMed ID: 21603696
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Exciton fine structure and spin relaxation in semiconductor colloidal quantum dots.
    Kim J; Wong CY; Scholes GD
    Acc Chem Res; 2009 Aug; 42(8):1037-46. PubMed ID: 19425542
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of Electric Fields on Multiple Exciton Generation.
    Gordi M; Moravvej-Farshi MK; Ramezani H
    Chemphyschem; 2018 Oct; 19(20):2782-2787. PubMed ID: 29993169
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ligands Slow Down Pure-Dephasing in Semiconductor Quantum Dots.
    Liu J; Kilina SV; Tretiak S; Prezhdo OV
    ACS Nano; 2015 Sep; 9(9):9106-16. PubMed ID: 26284384
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multiple exciton generation and dissociation in PbS quantum dot-electron acceptor complexes.
    Yang Y; Rodríguez-Córdoba W; Lian T
    Nano Lett; 2012 Aug; 12(8):4235-41. PubMed ID: 22757981
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.