These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 22360209)
41. Multiple exciton dissociation in CdSe quantum dots by ultrafast electron transfer to adsorbed methylene blue. Huang J; Huang Z; Yang Y; Zhu H; Lian T J Am Chem Soc; 2010 Apr; 132(13):4858-64. PubMed ID: 20218563 [TBL] [Abstract][Full Text] [Related]
42. Hot exciton cooling and multiple exciton generation in PbSe quantum dots. Kumar M; Vezzoli S; Wang Z; Chaudhary V; Ramanujan RV; Gurzadyan GG; Bruno A; Soci C Phys Chem Chem Phys; 2016 Nov; 18(45):31107-31114. PubMed ID: 27812574 [TBL] [Abstract][Full Text] [Related]
43. Comparing multiple exciton generation in quantum dots to impact ionization in bulk semiconductors: implications for enhancement of solar energy conversion. Beard MC; Midgett AG; Hanna MC; Luther JM; Hughes BK; Nozik AJ Nano Lett; 2010 Aug; 10(8):3019-27. PubMed ID: 20698615 [TBL] [Abstract][Full Text] [Related]
44. Exploring exciton relaxation and multiexciton generation in PbSe nanocrystals using hyperspectral near-IR probing. Gdor I; Sachs H; Roitblat A; Strasfeld DB; Bawendi MG; Ruhman S ACS Nano; 2012 Apr; 6(4):3269-77. PubMed ID: 22390473 [TBL] [Abstract][Full Text] [Related]
45. Excited-state relaxation in PbSe quantum dots. An JM; Califano M; Franceschetti A; Zunger A J Chem Phys; 2008 Apr; 128(16):164720. PubMed ID: 18447492 [TBL] [Abstract][Full Text] [Related]
46. Core and valence exciton formation in x-ray absorption, x-ray emission and x-ray excited optical luminescence from passivated Si nanocrystals at the Si L(2,3) edge. Siller L; Krishnamurthy S; Kjeldgaard L; Horrocks BR; Chao Y; Houlton A; Chakraborty AK; Hunt MR J Phys Condens Matter; 2009 Mar; 21(9):095005. PubMed ID: 21817378 [TBL] [Abstract][Full Text] [Related]
47. Size dependence of the multiple exciton generation rate in CdSe quantum dots. Lin Z; Franceschetti A; Lusk MT ACS Nano; 2011 Apr; 5(4):2503-11. PubMed ID: 21355556 [TBL] [Abstract][Full Text] [Related]
48. Hot-electron transfer from semiconductor nanocrystals. Tisdale WA; Williams KJ; Timp BA; Norris DJ; Aydil ES; Zhu XY Science; 2010 Jun; 328(5985):1543-7. PubMed ID: 20558714 [TBL] [Abstract][Full Text] [Related]
49. Phonon-induced pure-dephasing of luminescence, multiple exciton generation, and fission in silicon clusters. Liu J; Neukirch AJ; Prezhdo OV J Chem Phys; 2013 Oct; 139(16):164303. PubMed ID: 24182025 [TBL] [Abstract][Full Text] [Related]
50. Quantum Confinement Regimes in CdTe Nanocrystals Probed by Single Dot Spectroscopy: From Strong Confinement to the Bulk Limit. Tilchin J; Rabouw FT; Isarov M; Vaxenburg R; Van Dijk-Moes RJ; Lifshitz E; Vanmaekelbergh D ACS Nano; 2015 Aug; 9(8):7840-5. PubMed ID: 26181051 [TBL] [Abstract][Full Text] [Related]
51. Optical investigation of quantum confinement in PbSe nanocrystals at different points in the Brillouin zone. Koole R; Allan G; Delerue C; Meijerink A; Vanmaekelbergh D; Houtepen AJ Small; 2008 Jan; 4(1):127-33. PubMed ID: 18098244 [TBL] [Abstract][Full Text] [Related]
52. Direct-bandgap InAs quantum-dots have long-range electron-hole exchange whereas indirect gap Si dots have short-range exchange. Luo JW; Franceschetti A; Zunger A Nano Lett; 2009 Jul; 9(7):2648-53. PubMed ID: 19583283 [TBL] [Abstract][Full Text] [Related]
53. Semiconductor excitons in new light. Koch SW; Kira M; Khitrova G; Gibbs HM Nat Mater; 2006 Jul; 5(7):523-31. PubMed ID: 16819475 [TBL] [Abstract][Full Text] [Related]
54. Dynamics of Charge Transfer and Multiple Exciton Generation in the Doped Silicon Quantum Dot-Carbon Nanotube System: Density Functional Theory-Based Computation. Kryjevski A; Mihaylov D; Kilin D J Phys Chem Lett; 2018 Oct; 9(19):5759-5764. PubMed ID: 30199263 [TBL] [Abstract][Full Text] [Related]
56. Plasmonically enhanced electromotive force of narrow bandgap PbS QD-based photovoltaics. Li X; McNaughter PD; O'Brien P; Minamimoto H; Murakoshi K Phys Chem Chem Phys; 2018 May; 20(21):14818-14827. PubMed ID: 29780991 [TBL] [Abstract][Full Text] [Related]
57. Thermally activated photoluminescence in lead selenide colloidal quantum dots. Kigel A; Brumer M; Maikov GI; Sashchiuk A; Lifshitz E Small; 2009 Jul; 5(14):1675-81. PubMed ID: 19347855 [TBL] [Abstract][Full Text] [Related]
58. Enhanced Multiple Exciton Generation in PbS|CdS Janus-like Heterostructured Nanocrystals. Kroupa DM; Pach GF; Vörös M; Giberti F; Chernomordik BD; Crisp RW; Nozik AJ; Johnson JC; Singh R; Klimov VI; Galli G; Beard MC ACS Nano; 2018 Oct; 12(10):10084-10094. PubMed ID: 30216045 [TBL] [Abstract][Full Text] [Related]
59. Symmetric band structures and asymmetric ultrafast electron and hole relaxations in silicon and germanium quantum dots: time-domain ab initio simulation. Hyeon-Deuk K; Madrid AB; Prezhdo OV Dalton Trans; 2009 Dec; (45):10069-77. PubMed ID: 19904435 [TBL] [Abstract][Full Text] [Related]
60. Highly Efficient Multiple Exciton Generation and Harvesting in Few-Layer Black Phosphorus and Heterostructure. Zhou Q; Zhou H; Tao W; Zheng Y; Chen Y; Zhu H Nano Lett; 2020 Nov; 20(11):8212-8219. PubMed ID: 33044075 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]