These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
62. Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots. Ding Z; Quinn BM; Haram SK; Pell LE; Korgel BA; Bard AJ Science; 2002 May; 296(5571):1293-7. PubMed ID: 12016309 [TBL] [Abstract][Full Text] [Related]
63. Optical gain in silicon nanocrystals. Pavesi L; Dal Negro L; Mazzoleni C; Franzò G; Priolo F Nature; 2000 Nov; 408(6811):440-4. PubMed ID: 11100719 [TBL] [Abstract][Full Text] [Related]
64. Ab initio nonadiabatic molecular dynamics of the ultrafast electron injection from a PbSe quantum dot into the TiO2 surface. Long R; Prezhdo OV J Am Chem Soc; 2011 Nov; 133(47):19240-9. PubMed ID: 22007727 [TBL] [Abstract][Full Text] [Related]
65. New aspects of carrier multiplication in semiconductor nanocrystals. McGuire JA; Joo J; Pietryga JM; Schaller RD; Klimov VI Acc Chem Res; 2008 Dec; 41(12):1810-9. PubMed ID: 19006342 [TBL] [Abstract][Full Text] [Related]
66. Photoluminescence brightening via electrochemical trap passivation in ZnSe and Mn(2+)-doped ZnSe quantum dots. Weaver AL; Gamelin DR J Am Chem Soc; 2012 Apr; 134(15):6819-25. PubMed ID: 22417458 [TBL] [Abstract][Full Text] [Related]
67. The roles of electronic exchange and correlation in charge-transfer- to-solvent dynamics: Many-electron nonadiabatic mixed quantum/classical simulations of photoexcited sodium anions in the condensed phase. Glover WJ; Larsen RE; Schwartz BJ J Chem Phys; 2008 Oct; 129(16):164505. PubMed ID: 19045282 [TBL] [Abstract][Full Text] [Related]
68. Spatial Mapping of Sub-Bandgap States Induced by Local Nonstoichiometry in Individual Lead Sulfide Nanocrystals. Kislitsyn DA; Gervasi CF; Allen T; Palomaki PK; Hackley JD; Maruyama R; Nazin GV J Phys Chem Lett; 2014 Nov; 5(21):3701-7. PubMed ID: 26278739 [TBL] [Abstract][Full Text] [Related]
69. Prediction of an excitonic ground state in InAs/InSb quantum dots. He L; Bester G; Zunger A Phys Rev Lett; 2005 Jan; 94(1):016801. PubMed ID: 15698111 [TBL] [Abstract][Full Text] [Related]
70. Bright and dark excitons in semiconductor carbon nanotubes: insights from electronic structure calculations. Kilina S; Badaeva E; Piryatinski A; Tretiak S; Saxena A; Bishop AR Phys Chem Chem Phys; 2009 Jun; 11(21):4113-23. PubMed ID: 19458812 [TBL] [Abstract][Full Text] [Related]
71. Optimal surface functionalization of silicon quantum dots. Li QS; Zhang RQ; Lee ST; Niehaus TA; Frauenheim T J Chem Phys; 2008 Jun; 128(24):244714. PubMed ID: 18601372 [TBL] [Abstract][Full Text] [Related]
72. Surface passivated silicon nanocrystals with stable luminescence synthesized by femtosecond laser ablation in solution. Tan D; Ma Z; Xu B; Dai Y; Ma G; He M; Jin Z; Qiu J Phys Chem Chem Phys; 2011 Dec; 13(45):20255-61. PubMed ID: 21993573 [TBL] [Abstract][Full Text] [Related]
73. A study of the excited states in cytosine and guanine stacks in the Hartree-Fock and exciton approximations. Grobelsek-Vracko M; Zaider M Radiat Res; 1994 Apr; 138(1):18-25. PubMed ID: 8146296 [TBL] [Abstract][Full Text] [Related]
74. Electrochemically controlled auger quenching of Mn²+ photoluminescence in doped semiconductor nanocrystals. White MA; Weaver AL; Beaulac R; Gamelin DR ACS Nano; 2011 May; 5(5):4158-68. PubMed ID: 21452880 [TBL] [Abstract][Full Text] [Related]
75. The effect of surface passivation on the structure of sulphur-rich PbS colloidal quantum dots for photovoltaic application. Malgras V; Nattestad A; Yamauchi Y; Dou SX; Kim JH Nanoscale; 2015 Mar; 7(13):5706-11. PubMed ID: 25743947 [TBL] [Abstract][Full Text] [Related]
76. Multiple Exciton Generation in Colloidal Nanocrystals. Smith C; Binks D Nanomaterials (Basel); 2013 Dec; 4(1):19-45. PubMed ID: 28348283 [TBL] [Abstract][Full Text] [Related]
77. Efficient charge-carrier extraction from Ag₂S quantum dots prepared by the SILAR method for utilization of multiple exciton generation. Zhang X; Liu J; Johansson EM Nanoscale; 2015 Jan; 7(4):1454-62. PubMed ID: 25504257 [TBL] [Abstract][Full Text] [Related]
78. Diamagnetic response of exciton complexes in semiconductor quantum dots. Tsai MF; Lin H; Lin CH; Lin SD; Wang SY; Lo MC; Cheng SJ; Lee MC; Chang WH Phys Rev Lett; 2008 Dec; 101(26):267402. PubMed ID: 19113787 [TBL] [Abstract][Full Text] [Related]
79. Effect of quantum and dielectric confinement on the exciton-exciton interaction energy in type II core/shell semiconductor nanocrystals. Piryatinski A; Ivanov SA; Tretiak S; Klimov VI Nano Lett; 2007 Jan; 7(1):108-15. PubMed ID: 17212448 [TBL] [Abstract][Full Text] [Related]
80. Multiple exciton generation induced enhancement of the photoresponse of pulsed-laser-ablation synthesized single-wall-carbon-nanotube/PbS-quantum-dots nanohybrids. Ka I; Le Borgne V; Fujisawa K; Hayashi T; Kim YA; Endo M; Ma D; El Khakani MA Sci Rep; 2016 Feb; 6():20083. PubMed ID: 26830452 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]