These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 22360217)

  • 21. Spontaneous cavitation in a Lennard-Jones liquid at negative pressures.
    Baidakov VG; Bobrov KS
    J Chem Phys; 2014 May; 140(18):184506. PubMed ID: 24832287
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Positive Tolman length in a lattice gas with three-body interactions.
    Tröster A; Binder K
    Phys Rev Lett; 2011 Dec; 107(26):265701. PubMed ID: 22243167
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Crystal nucleation rate isotherms in Lennard-Jones liquids.
    Baidakov VG; Tipeev AO; Bobrov KS; Ionov GV
    J Chem Phys; 2010 Jun; 132(23):234505. PubMed ID: 20572719
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Low-density/high-density liquid phase transition for model globular proteins.
    Grosfils P; Lutsko JF
    Langmuir; 2010 Jun; 26(11):8510-6. PubMed ID: 20222718
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Free energy of cluster formation and a new scaling relation for the nucleation rate.
    Tanaka KK; Diemand J; Angélil R; Tanaka H
    J Chem Phys; 2014 May; 140(19):194310. PubMed ID: 24852541
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The surface tension of TIP4P/2005 water model using the Ewald sums for the dispersion interactions.
    Alejandre J; Chapela GA
    J Chem Phys; 2010 Jan; 132(1):014701. PubMed ID: 20078174
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spontaneous cavitation in a Lennard-Jones liquid: Molecular dynamics simulation and the van der Waals-Cahn-Hilliard gradient theory.
    Baidakov VG
    J Chem Phys; 2016 Feb; 144(7):074502. PubMed ID: 26896990
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sensitivity of nucleation phenomena on range of interaction potential.
    Singh RS; Santra M; Bagchi B
    J Chem Phys; 2012 Feb; 136(8):084701. PubMed ID: 22380053
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Solid-liquid surface free energy of Lennard-Jones liquid on smooth and rough surfaces computed by molecular dynamics using the phantom-wall method.
    Leroy F; Müller-Plathe F
    J Chem Phys; 2010 Jul; 133(4):044110. PubMed ID: 20687636
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Homogeneous nucleation and growth in simple fluids. II. Scaling behavior, instabilities, and the (n,v) order parameter.
    Uline MJ; Torabi K; Corti DS
    J Chem Phys; 2010 Nov; 133(17):174512. PubMed ID: 21054056
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Heterogeneous nucleation at a wall near a wetting transition: a Monte Carlo test of the classical theory.
    Winter D; Virnau P; Binder K
    J Phys Condens Matter; 2009 Nov; 21(46):464118. PubMed ID: 21715882
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermodynamics and kinetics of bubble nucleation: simulation methodology.
    Meadley SL; Escobedo FA
    J Chem Phys; 2012 Aug; 137(7):074109. PubMed ID: 22920105
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Communications: Evidence for the role of fluctuations in the thermodynamics of nanoscale drops and the implications in computations of the surface tension.
    Sampayo JG; Malijevský A; Müller EA; de Miguel E; Jackson G
    J Chem Phys; 2010 Apr; 132(14):141101. PubMed ID: 20405977
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular simulation study of cavity-generated instabilities in the superheated Lennard-Jones liquid.
    Torabi K; Corti DS
    J Chem Phys; 2010 Oct; 133(13):134505. PubMed ID: 20942544
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Crystal nucleation and the solid-liquid interfacial free energy.
    Baidakov VG; Tipeev AO
    J Chem Phys; 2012 Feb; 136(7):074510. PubMed ID: 22360251
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A parameter-free prediction of simulated crystal nucleation times in the Lennard-Jones system: from the steady-state nucleation to the transient time regime.
    Peng LJ; Morris JR; Aga RS
    J Chem Phys; 2010 Aug; 133(8):084505. PubMed ID: 20815578
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Classical nucleation theory with a radius-dependent surface tension: a two-dimensional lattice-gas automata model.
    Hickey J; L'Heureux I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022406. PubMed ID: 23496525
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Experimental study of homogeneous nucleation from the bismuth supersaturated vapor: evaluation of the surface tension of critical nucleus.
    Onischuk AA; Vosel SV; Borovkova OV; Baklanov AM; Karasev VV; di Stasio S
    J Chem Phys; 2012 Jun; 136(22):224506. PubMed ID: 22713056
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Solid-liquid equilibria and triple points of n-6 Lennard-Jones fluids.
    Ahmed A; Sadus RJ
    J Chem Phys; 2009 Nov; 131(17):174504. PubMed ID: 19895022
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Surface thermodynamics of planar, cylindrical, and spherical vapour-liquid interfaces of water.
    Lau GV; Ford IJ; Hunt PA; Müller EA; Jackson G
    J Chem Phys; 2015 Mar; 142(11):114701. PubMed ID: 25796259
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.