These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 22360223)

  • 1. Kinetic pathways to peptide aggregation on surfaces: the effects of β-sheet propensity and surface attraction.
    Morriss-Andrews A; Shea JE
    J Chem Phys; 2012 Feb; 136(6):065103. PubMed ID: 22360223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. β-sheet propensity controls the kinetic pathways and morphologies of seeded peptide aggregation.
    Morriss-Andrews A; Bellesia G; Shea JE
    J Chem Phys; 2012 Oct; 137(14):145104. PubMed ID: 23061868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of beta-sheet propensity on peptide aggregation.
    Bellesia G; Shea JE
    J Chem Phys; 2009 Apr; 130(14):145103. PubMed ID: 19368476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diversity of kinetic pathways in amyloid fibril formation.
    Bellesia G; Shea JE
    J Chem Phys; 2009 Sep; 131(11):111102. PubMed ID: 19778093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of surface interactions on peptide aggregate morphology.
    Morriss-Andrews A; Bellesia G; Shea JE
    J Chem Phys; 2011 Aug; 135(8):085102. PubMed ID: 21895220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing amyloid fibril formation of the NFGAIL peptide by computer simulations.
    Melquiond A; Gelly JC; Mousseau N; Derreumaux P
    J Chem Phys; 2007 Feb; 126(6):065101. PubMed ID: 17313247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surfactant effects on amyloid aggregation kinetics.
    Friedman R; Caflisch A
    J Mol Biol; 2011 Nov; 414(2):303-12. PubMed ID: 22019473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monte Carlo simulations of protein amyloid formation reveal origin of sigmoidal aggregation kinetics.
    Linse B; Linse S
    Mol Biosyst; 2011 Jul; 7(7):2296-303. PubMed ID: 21589952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular mechanism of β-sheet self-organization at water-hydrophobic interfaces.
    Nikolic A; Baud S; Rauscher S; Pomès R
    Proteins; 2011 Jan; 79(1):1-22. PubMed ID: 20938982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-assembly of beta-sheet forming peptides into chiral fibrillar aggregates.
    Bellesia G; Shea JE
    J Chem Phys; 2007 Jun; 126(24):245104. PubMed ID: 17614592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of chain length on the aggregation of model polyglutamine peptides: molecular dynamics simulations.
    Marchut AJ; Hall CK
    Proteins; 2007 Jan; 66(1):96-109. PubMed ID: 17068817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pathways and intermediates of amyloid fibril formation.
    Pellarin R; Guarnera E; Caflisch A
    J Mol Biol; 2007 Dec; 374(4):917-24. PubMed ID: 18028943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface effects on aggregation kinetics of amyloidogenic peptides.
    Vácha R; Linse S; Lund M
    J Am Chem Soc; 2014 Aug; 136(33):11776-82. PubMed ID: 25068615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of aggregation of amyloid peptides by beta-sheet breaker peptides and their binding affinity.
    Viet MH; Ngo ST; Lam NS; Li MS
    J Phys Chem B; 2011 Jun; 115(22):7433-46. PubMed ID: 21563780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissociation of Abeta(16-22) amyloid fibrils probed by molecular dynamics.
    Takeda T; Klimov DK
    J Mol Biol; 2007 May; 368(4):1202-13. PubMed ID: 17382346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interpreting the aggregation kinetics of amyloid peptides.
    Pellarin R; Caflisch A
    J Mol Biol; 2006 Jul; 360(4):882-92. PubMed ID: 16797587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-assembly of polypeptides into left-handedly twisted fibril-like structures.
    Mu Y; Gao YQ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 1):041927. PubMed ID: 19905362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural stability and aggregation behavior of the VEALYL peptide derived from human insulin: a molecular dynamics simulation study.
    Lin YF; Zhao JH; Liu HL; Liu KT; Chen JT; Tsai WB; Ho Y
    Biopolymers; 2010; 94(3):269-78. PubMed ID: 19810108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Factors that drive peptide assembly and fibril formation: experimental and theoretical analysis of Sup35 NNQQNY mutants.
    Do TD; Economou NJ; LaPointe NE; Kincannon WM; Bleiholder C; Feinstein SC; Teplow DB; Buratto SK; Bowers MT
    J Phys Chem B; 2013 Jul; 117(28):8436-46. PubMed ID: 23802812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solution conformation and amyloid-like fibril formation of a polar peptide derived from a beta-hairpin in the OspA single-layer beta-sheet.
    Ohnishi S; Koide A; Koide S
    J Mol Biol; 2000 Aug; 301(2):477-89. PubMed ID: 10926522
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.