These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Calculation of solid-liquid interfacial free energy: a classical nucleation theory based approach. Bai XM; Li M J Chem Phys; 2006 Mar; 124(12):124707. PubMed ID: 16599718 [TBL] [Abstract][Full Text] [Related]
4. Hit and miss of classical nucleation theory as revealed by a molecular simulation study of crystal nucleation in supercooled sulfur hexafluoride. Leyssale JM; Delhommelle J; Millot C J Chem Phys; 2007 Jul; 127(4):044504. PubMed ID: 17672704 [TBL] [Abstract][Full Text] [Related]
5. Spontaneous cavitation in a Lennard-Jones liquid at negative pressures. Baidakov VG; Bobrov KS J Chem Phys; 2014 May; 140(18):184506. PubMed ID: 24832287 [TBL] [Abstract][Full Text] [Related]
6. Comparing crystal-melt interfacial free energies through homogeneous nucleation rates. Bai XM; Li M J Phys Condens Matter; 2008 Sep; 20(37):375103. PubMed ID: 21694437 [TBL] [Abstract][Full Text] [Related]
7. Cavitation and crystallization in a metastable Lennard-Jones liquid at negative pressures and low temperatures. Baidakov VG; Bobrov KS; Teterin AS J Chem Phys; 2011 Aug; 135(5):054512. PubMed ID: 21823717 [TBL] [Abstract][Full Text] [Related]
8. Molecular simulation of bundle-like crystal nucleation from n-eicosane melts. Yi P; Rutledge GC J Chem Phys; 2011 Jul; 135(2):024903. PubMed ID: 21766967 [TBL] [Abstract][Full Text] [Related]
9. Nucleation of tetrahedral solids: A molecular dynamics study of supercooled liquid silicon. Li T; Donadio D; Galli G J Chem Phys; 2009 Dec; 131(22):224519. PubMed ID: 20001069 [TBL] [Abstract][Full Text] [Related]
10. Density functional theory for crystal-liquid interfaces of Lennard-Jones fluid. Wang X; Mi J; Zhong C J Chem Phys; 2013 Apr; 138(16):164704. PubMed ID: 23635162 [TBL] [Abstract][Full Text] [Related]
11. An aggregation-volume-bias Monte Carlo investigation on the condensation of a Lennard-Jones vapor below the triple point and crystal nucleation in cluster systems: an in-depth evaluation of the classical nucleation theory. Chen B; Kim H; Keasler SJ; Nellas RB J Phys Chem B; 2008 Apr; 112(13):4067-78. PubMed ID: 18335920 [TBL] [Abstract][Full Text] [Related]
12. Molecular dynamics simulations of nucleation from vapor to solid composed of Lennard-Jones molecules. Tanaka KK; Tanaka H; Yamamoto T; Kawamura K J Chem Phys; 2011 May; 134(20):204313. PubMed ID: 21639446 [TBL] [Abstract][Full Text] [Related]
13. Test of classical nucleation theory via molecular-dynamics simulation. Bai XM; Li M J Chem Phys; 2005 Jun; 122(22):224510. PubMed ID: 15974694 [TBL] [Abstract][Full Text] [Related]
14. Test of classical nucleation theory on deeply supercooled high-pressure simulated silica. Saika-Voivod I; Poole PH; Bowles RK J Chem Phys; 2006 Jun; 124(22):224709. PubMed ID: 16784303 [TBL] [Abstract][Full Text] [Related]
15. Spherical seed mediated vapor condensation of Lennard-Jones fluid: a density functional theory approach. Ghosh S; Ghosh SK J Chem Phys; 2013 Aug; 139(5):054702. PubMed ID: 23927276 [TBL] [Abstract][Full Text] [Related]
16. Molecular simulation of crystal nucleation in n-octane melts. Yi P; Rutledge GC J Chem Phys; 2009 Oct; 131(13):134902. PubMed ID: 19814570 [TBL] [Abstract][Full Text] [Related]
17. Recent developments in the kinetic theory of nucleation. Ruckenstein E; Djikaev YS Adv Colloid Interface Sci; 2005 Dec; 118(1-3):51-72. PubMed ID: 16137628 [TBL] [Abstract][Full Text] [Related]
18. Determination of the solid-liquid interfacial free energy along a coexistence line by Gibbs-Cahn integration. Laird BB; Davidchack RL; Yang Y; Asta M J Chem Phys; 2009 Sep; 131(11):114110. PubMed ID: 19778103 [TBL] [Abstract][Full Text] [Related]