These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 22360302)
1. Heterogeneity of intracellular polymer storage states in enhanced biological phosphorus removal (EBPR)--observation and modeling. Bucci V; Majed N; Hellweger FL; Gu AZ Environ Sci Technol; 2012 Mar; 46(6):3244-52. PubMed ID: 22360302 [TBL] [Abstract][Full Text] [Related]
2. Application of Raman microscopy for simultaneous and quantitative evaluation of multiple intracellular polymers dynamics functionally relevant to enhanced biological phosphorus removal processes. Majed N; Gu AZ Environ Sci Technol; 2010 Nov; 44(22):8601-8. PubMed ID: 20949949 [TBL] [Abstract][Full Text] [Related]
3. Competition between polyphosphate and glycogen accumulating organisms in enhanced biological phosphorus removal systems with acetate and propionate as carbon sources. Oehmen A; Saunders AM; Vives MT; Yuan Z; Keller J J Biotechnol; 2006 May; 123(1):22-32. PubMed ID: 16293332 [TBL] [Abstract][Full Text] [Related]
4. Identification of functionally relevant populations in enhanced biological phosphorus removal processes based on intracellular polymers profiles and insights into the metabolic diversity and heterogeneity. Majed N; Chernenko T; Diem M; Gu AZ Environ Sci Technol; 2012 May; 46(9):5010-7. PubMed ID: 22471394 [TBL] [Abstract][Full Text] [Related]
5. Diversity matters: dynamic simulation of distributed bacterial states in suspended growth biological wastewater treatment systems. Schuler AJ Biotechnol Bioeng; 2005 Jul; 91(1):62-74. PubMed ID: 15880520 [TBL] [Abstract][Full Text] [Related]
6. Model-based analysis of anaerobic acetate uptake by a mixed culture of polyphosphate-accumulating and glycogen-accumulating organisms. Zeng RJ; Yuan Z; Keller J Biotechnol Bioeng; 2003 Aug; 83(3):293-302. PubMed ID: 12783485 [TBL] [Abstract][Full Text] [Related]
7. A new interpretation of ASM2d for modeling of SBR performance for enhanced biological phosphorus removal under different P/HAc ratios. Yagci N; Insel G; Tasli R; Artan N; Randall CW; Orhon D Biotechnol Bioeng; 2006 Feb; 93(2):258-70. PubMed ID: 16261629 [TBL] [Abstract][Full Text] [Related]
8. Process hydraulics, distributed bacterial states, and biological phosphorus removal from wastewater. Schuler AJ Biotechnol Bioeng; 2006 Aug; 94(5):909-20. PubMed ID: 16548000 [TBL] [Abstract][Full Text] [Related]
9. Effect of pH on biological phosphorus uptake. Serralta J; Ferrer J; Borrás L; Seco A Biotechnol Bioeng; 2006 Dec; 95(5):875-82. PubMed ID: 16958137 [TBL] [Abstract][Full Text] [Related]
10. Comparison of acetate and propionate uptake by polyphosphate accumulating organisms and glycogen accumulating organisms. Oehmen A; Yuan Z; Blackall LL; Keller J Biotechnol Bioeng; 2005 Jul; 91(2):162-8. PubMed ID: 15892052 [TBL] [Abstract][Full Text] [Related]
11. Microbial selection of polyphosphate-accumulating bacteria in activated sludge wastewater treatment processes for enhanced biological phosphate removal. Mino T Biochemistry (Mosc); 2000 Mar; 65(3):341-8. PubMed ID: 10739477 [TBL] [Abstract][Full Text] [Related]
12. The effect of pH on the competition between polyphosphate-accumulating organisms and glycogen-accumulating organisms. Oehmen A; Teresa Vives M; Lu H; Yuan Z; Keller J Water Res; 2005 Sep; 39(15):3727-37. PubMed ID: 16098556 [TBL] [Abstract][Full Text] [Related]
13. Aerobic phosphorus release linked to acetate uptake in bio-P sludge: process modeling using oxygen uptake rate. Guisasola A; Pijuan M; Baeza JA; Carrera J; Casas C; Lafuente J Biotechnol Bioeng; 2004 Mar; 85(7):722-33. PubMed ID: 14991650 [TBL] [Abstract][Full Text] [Related]
14. Factors affecting the microbial populations at full-scale enhanced biological phosphorus removal (EBPR) wastewater treatment plants in The Netherlands. López-Vázquez CM; Hooijmans CM; Brdjanovic D; Gijzen HJ; van Loosdrecht MC Water Res; 2008 May; 42(10-11):2349-60. PubMed ID: 18272198 [TBL] [Abstract][Full Text] [Related]
15. The competition between PAOs (phosphorus accumulating organisms) and GAOs (glycogen accumulating organisms) in EBPR (enhanced biological phosphorus removal) systems at different temperatures and the effects on system performance. Erdal UG; Erdal ZK; Randall CW Water Sci Technol; 2003; 47(11):1-8. PubMed ID: 12906264 [TBL] [Abstract][Full Text] [Related]
16. Is the whole the sum of its parts? Agent-based modelling of wastewater treatment systems. Schuler AJ; Majed N; Bucci V; Hellweger FL; Tu Y; Gu AZ Water Sci Technol; 2011; 63(8):1590-8. PubMed ID: 21866756 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of intracellular polyphosphate dynamics in enhanced biological phosphorus removal process using Raman microscopy. Majed N; Matthäus C; Diem M; Gu AZ Environ Sci Technol; 2009 Jul; 43(14):5436-42. PubMed ID: 19708378 [TBL] [Abstract][Full Text] [Related]
18. [Research advance in polyphosphate-accumulating microorganisms in enhanced biological phosphorus removal process]. Zheng J; Ran W; Zhong Z; He J Ying Yong Sheng Tai Xue Bao; 2004 Aug; 15(8):1487-90. PubMed ID: 15574014 [TBL] [Abstract][Full Text] [Related]
19. Short-term effects of carbon source on the competition of polyphosphate accumulating organisms and glycogen accumulating organisms. Oehmen A; Yuan Z; Blackall LL; Keller J Water Sci Technol; 2004; 50(10):139-44. PubMed ID: 15656306 [TBL] [Abstract][Full Text] [Related]
20. Distributed state simulation of endogenous processes in biological wastewater treatment. Schuler AJ; Jassby D Biotechnol Bioeng; 2007 Aug; 97(5):1087-97. PubMed ID: 17216663 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]