These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Comparative Analysis of Microbial Communities in Iron-Dominated Flocculent Mats in Deep-Sea Hydrothermal Environments. Makita H; Kikuchi S; Mitsunobu S; Takaki Y; Yamanaka T; Toki T; Noguchi T; Nakamura K; Abe M; Hirai M; Yamamoto M; Uematsu K; Miyazaki J; Nunoura T; Takahashi Y; Takai K Appl Environ Microbiol; 2016 Oct; 82(19):5741-55. PubMed ID: 27422841 [TBL] [Abstract][Full Text] [Related]
3. Presence, distribution, and diversity of iron-oxidizing bacteria at a landfill leachate-impacted groundwater surface water interface. Yu R; Gan P; Mackay AA; Zhang S; Smets BF FEMS Microbiol Ecol; 2010 Feb; 71(2):260-71. PubMed ID: 19909343 [TBL] [Abstract][Full Text] [Related]
4. Spatially Resolved Distribution of Fe Species around Microbes at the Submicron Scale in Natural Bacteriogenic Iron Oxides. Suga H; Kikuchi S; Takeichi Y; Miyamoto C; Miyahara M; Mitsunobu S; Ohigashi T; Mase K; Ono K; Takahashi Y Microbes Environ; 2017 Sep; 32(3):283-287. PubMed ID: 28781344 [TBL] [Abstract][Full Text] [Related]
5. Phylogenetic and physiological diversity of dissimilatory ferric iron reducers in sediments of the polluted Scheldt estuary, Northwest Europe. Lin B; Hyacinthe C; Bonneville S; Braster M; Van Cappellen P; Röling WF Environ Microbiol; 2007 Aug; 9(8):1956-68. PubMed ID: 17635542 [TBL] [Abstract][Full Text] [Related]
6. Bacterial diversity in Fe-rich hydrothermal sediments at two South Tonga Arc submarine volcanoes. Forget NL; Murdock SA; Juniper SK Geobiology; 2010 Dec; 8(5):417-32. PubMed ID: 20533949 [TBL] [Abstract][Full Text] [Related]
7. Fate of arsenic during microbial reduction of biogenic versus Abiogenic As-Fe(III)-mineral coprecipitates. Muehe EM; Scheer L; Daus B; Kappler A Environ Sci Technol; 2013 Aug; 47(15):8297-307. PubMed ID: 23806105 [TBL] [Abstract][Full Text] [Related]
8. Physiological and phylogenetic study of an ammonium-oxidizing culture at high nitrite concentrations. Tan NC; Kampschreur MJ; Wanders W; van der Pol WL; van de Vossenberg J; Kleerebezem R; van Loosdrecht MC; Jetten MS Syst Appl Microbiol; 2008 Jun; 31(2):114-25. PubMed ID: 18289820 [TBL] [Abstract][Full Text] [Related]
9. Resolving colocalization of bacteria and metal(loid)s on plant root surfaces by combining fluorescence in situ hybridization (FISH) with multiple-energy micro-focused X-ray fluorescence (ME μXRF). Honeker LK; Root RA; Chorover J; Maier RM J Microbiol Methods; 2016 Dec; 131():23-33. PubMed ID: 27693754 [TBL] [Abstract][Full Text] [Related]
10. Advances in the detection of as in environmental samples using low energy X-ray fluorescence in a scanning transmission X-ray microscope: arsenic immobilization by an Fe(II)-oxidizing freshwater bacteria. Hitchcock AP; Obst M; Wang J; Lu YS; Tyliszczak T Environ Sci Technol; 2012 Mar; 46(5):2821-9. PubMed ID: 22283463 [TBL] [Abstract][Full Text] [Related]
11. Characterization of Fe(II) oxidizing bacterial activities and communities at two acidic Appalachian coalmine drainage-impacted sites. Senko JM; Wanjugi P; Lucas M; Bruns MA; Burgos WD ISME J; 2008 Nov; 2(11):1134-45. PubMed ID: 18548117 [TBL] [Abstract][Full Text] [Related]
12. Identification of rice root associated nitrate, sulfate and ferric iron reducing bacteria during root decomposition. Scheid D; Stubner S; Conrad R FEMS Microbiol Ecol; 2004 Nov; 50(2):101-10. PubMed ID: 19712368 [TBL] [Abstract][Full Text] [Related]
13. Sulfur-metabolizing bacterial populations in microbial mats of the Nakabusa hot spring, Japan. Kubo K; Knittel K; Amann R; Fukui M; Matsuura K Syst Appl Microbiol; 2011 Jun; 34(4):293-302. PubMed ID: 21353426 [TBL] [Abstract][Full Text] [Related]
14. Transformation of vivianite by anaerobic nitrate-reducing iron-oxidizing bacteria. Miot J; Benzerara K; Morin G; Bernard S; Beyssac O; Larquet E; Kappler A; Guyot F Geobiology; 2009 Jun; 7(3):373-84. PubMed ID: 19573166 [TBL] [Abstract][Full Text] [Related]
15. Linking microbial oxidation of arsenic with detection and phylogenetic analysis of arsenite oxidase genes in diverse geothermal environments. Hamamura N; Macur RE; Korf S; Ackerman G; Taylor WP; Kozubal M; Reysenbach AL; Inskeep WP Environ Microbiol; 2009 Feb; 11(2):421-31. PubMed ID: 19196273 [TBL] [Abstract][Full Text] [Related]
16. Characterization of biogenic iron oxides collected by the newly designed liquid culture method using diffusion chambers. Kikuchi S; Makita H; Takai K; Yamaguchi N; Takahashi Y Geobiology; 2014 Mar; 12(2):133-45. PubMed ID: 24382149 [TBL] [Abstract][Full Text] [Related]
17. Sulphide oxidation to elemental sulphur in a membrane bioreactor: performance and characterization of the selected microbial sulphur-oxidizing community. Vannini C; Munz G; Mori G; Lubello C; Verni F; Petroni G Syst Appl Microbiol; 2008 Dec; 31(6-8):461-73. PubMed ID: 18814984 [TBL] [Abstract][Full Text] [Related]
18. Quantitative chemical imaging of element diffusion into heterogeneous media using laser ablation inductively coupled plasma mass spectrometry, synchrotron micro-X-ray fluorescence, and extended X-ray absorption fine structure spectroscopy. Wang HA; Grolimund D; Van Loon LR; Barmettler K; Borca CN; Aeschlimann B; Günther D Anal Chem; 2011 Aug; 83(16):6259-66. PubMed ID: 21623637 [TBL] [Abstract][Full Text] [Related]
19. Anaerobic Fe(II)-oxidizing bacteria show as resistance and immobilize as during Fe(III) mineral precipitation. Hohmann C; Winkler E; Morin G; Kappler A Environ Sci Technol; 2010 Jan; 44(1):94-101. PubMed ID: 20039738 [TBL] [Abstract][Full Text] [Related]
20. Community structures and activities of nitrifying and denitrifying bacteria in industrial wastewater-treating biofilms. Satoh H; Yamakawa T; Kindaichi T; Ito T; Okabe S Biotechnol Bioeng; 2006 Jul; 94(4):762-72. PubMed ID: 16477661 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]