These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 22360645)

  • 41. Lack of significant circadian and post-prandial variation in phosphate levels in subjects receiving chronic hemodialysis therapy.
    Trivedi H; Moore H; Atalla J
    J Nephrol; 2005; 18(4):417-22. PubMed ID: 16245246
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [The impact of changes in levels of calcium, phosphate and magnesium during hemodialysis on autonomic system reactivity as measured by heart rate variability analysis].
    Buda S; Stompór T; Sułowicz W; Kopeć J; Szymczakiewicz-Multanowska A; Janion M
    Przegl Lek; 2000; 57(6):340-5. PubMed ID: 11107869
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Characterization of insulin adsorption behavior of dialyzer membranes used in hemodialysis.
    Abe M; Okada K; Ikeda K; Matsumoto S; Soma M; Matsumoto K
    Artif Organs; 2011 Apr; 35(4):398-403. PubMed ID: 21314833
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparison of measured vs kinetic-model predicted phosphate removal during hemodialysis and hemodiafiltration.
    Daugirdas JT
    Nephrol Dial Transplant; 2022 Nov; 37(12):2522-2527. PubMed ID: 35869975
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [The influence of short-term magnesium carbonate treatment on calcium-phosphorus balance in dialysis patients].
    Zwiech R; Dryja P; Łacina D; Króliczak V; Chrul S; Kacprzyk F
    Wiad Lek; 2011; 64(1):9-14. PubMed ID: 21812357
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Determination of iron sucrose (Venofer) or iron dextran (DexFerrum) removal by hemodialysis: an in-vitro study.
    Manley HJ; Grabe DW
    BMC Nephrol; 2004 Jan; 5():1. PubMed ID: 14718064
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Salivary phosphorus and phosphate content of beverages: implications for the treatment of uremic hyperphosphatemia.
    Savica V; Calò LA; Monardo P; Santoro D; Mallamace A; Muraca U; Bellinghieri G
    J Ren Nutr; 2009 Jan; 19(1):69-72. PubMed ID: 19121775
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Review of dialysate calcium concentration in hemodialysis.
    Toussaint N; Cooney P; Kerr PG
    Hemodial Int; 2006 Oct; 10(4):326-37. PubMed ID: 17014507
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Phosphate Removal During Long Nocturnal Hemodialysis/Hemodiafiltration: A Study With Total Dialysate Collection.
    Zupančič T; Ponikvar R; Gubenšek J; Buturović-Ponikvar J
    Ther Apher Dial; 2016 Jun; 20(3):267-71. PubMed ID: 27312913
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Serum beta-2 microglobulin levels predict mortality in dialysis patients: results of the HEMO study.
    Cheung AK; Rocco MV; Yan G; Leypoldt JK; Levin NW; Greene T; Agodoa L; Bailey J; Beck GJ; Clark W; Levey AS; Ornt DB; Schulman G; Schwab S; Teehan B; Eknoyan G
    J Am Soc Nephrol; 2006 Feb; 17(2):546-55. PubMed ID: 16382021
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Phosphate removal during hemodialysis, hemodiafiltration, and hemofiltration. A reappraisal.
    Man NK; Chauveau P; Kuno T; Poignet JL; Yanai M
    ASAIO Trans; 1991; 37(3):M463-5. PubMed ID: 1751238
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Phosphorus dynamics during hemodialysis.
    Kjellstrand CM; Ing TS; Kjellstrand PT; Odar-Cederlof I; Lagg CR
    Hemodial Int; 2011 Apr; 15(2):226-33. PubMed ID: 21352467
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Increased binding of beta-2-microglobulin to blood cells in dialysis patients treated with high-flux dialyzers compared with low-flux membranes contributed to reduced beta-2-microglobulin concentrations. Results of a cross-over study.
    Traut M; Haufe CC; Eismann U; Deppisch RM; Stein G; Wolf G
    Blood Purif; 2007; 25(5-6):432-40. PubMed ID: 17957097
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Clinical evaluation of a model for prediction of end-dialysis systemic ionized calcium concentration in citrate hemodialysis.
    Thijssen S; Kossmann RJ; Kruse A; Kotanko P
    Blood Purif; 2013; 35(1-3):133-8. PubMed ID: 23343558
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Influencing factors in the control of phosphorus in peritoneal dialysis. Therapeutic options].
    Gallar P; Ortega O; Gutiérrez M; Muñoz M; Hilara L; Oliet A; Rodríguez I; Giménez E; Vigil A
    Nefrologia; 2000; 20(4):355-61. PubMed ID: 11039261
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Correction of hypophosphatemia in patients on hemodialysis using a calcium-free dialysate with added phosphate.
    Kaye M; Vasilevsky M; Barber E
    Clin Nephrol; 1991 Mar; 35(3):130-3. PubMed ID: 2032398
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Clinical outcomes for maintenance hemodialysis patients using a high-flux (FX60) dialyzer.
    Li Y; Wang Y; Lv J; Wang M
    Ren Fail; 2013 Oct; 35(9):1240-5. PubMed ID: 23924354
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Modifications to bicarbonate conductivity: A way to increase phosphate removal during hemodialysis? Proof of concept.
    Bertocchio JP; Mohajer M; Gaha K; Ramont L; Maheut H; Rieu P
    Hemodial Int; 2016 Oct; 20(4):601-609. PubMed ID: 27060343
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Increasing blood flow increases kt/V(urea) and potassium removal but fails to improve phosphate removal.
    Gutzwiller JP; Schneditz D; Huber AR; Schindler C; Garbani E; Zehnder CE
    Clin Nephrol; 2003 Feb; 59(2):130-6. PubMed ID: 12608556
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Pneumatic Compression, But Not Exercise, Can Avoid Intradialytic Hypotension: A Randomized Trial.
    Álvares VRC; Ramos CD; Pereira BJ; Pinto AL; Moysés RMA; Gualano B; Elias RM
    Am J Nephrol; 2017; 45(5):409-416. PubMed ID: 28407637
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.