BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 22360758)

  • 1. The enolization chemistry of a thioester-dependent racemase: the 1.4 Å crystal structure of a reaction intermediate complex characterized by detailed QM/MM calculations.
    Sharma S; Bhaumik P; Schmitz W; Venkatesan R; Hiltunen JK; Conzelmann E; Juffer AH; Wierenga RK
    J Phys Chem B; 2012 Mar; 116(11):3619-29. PubMed ID: 22360758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The catalysis of the 1,1-proton transfer by alpha-methyl-acyl-CoA racemase is coupled to a movement of the fatty acyl moiety over a hydrophobic, methionine-rich surface.
    Bhaumik P; Schmitz W; Hassinen A; Hiltunen JK; Conzelmann E; Wierenga RK
    J Mol Biol; 2007 Apr; 367(4):1145-61. PubMed ID: 17320106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystallographic analysis of the reaction pathway of Zoogloea ramigera biosynthetic thiolase.
    Modis Y; Wierenga RK
    J Mol Biol; 2000 Apr; 297(5):1171-82. PubMed ID: 10764581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alpha-methylacyl-CoA racemase from Mycobacterium tuberculosis. Mutational and structural characterization of the active site and the fold.
    Savolainen K; Bhaumik P; Schmitz W; Kotti TJ; Conzelmann E; Wierenga RK; Hiltunen JK
    J Biol Chem; 2005 Apr; 280(13):12611-20. PubMed ID: 15632186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of fatty acid-CoA racemase from Mycobacterium tuberculosis H37Rv.
    Lee KS; Park SM; Rhee KH; Bang WG; Hwang KY; Chi YM
    Proteins; 2006 Aug; 64(3):817-22. PubMed ID: 16755588
    [No Abstract]   [Full Text] [Related]  

  • 6. The thiolase reaction mechanism: the importance of Asn316 and His348 for stabilizing the enolate intermediate of the Claisen condensation.
    Meriläinen G; Poikela V; Kursula P; Wierenga RK
    Biochemistry; 2009 Nov; 48(46):11011-25. PubMed ID: 19842716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystallization and preliminary X-ray diffraction studies of an alpha-methylacyl-CoA racemase from Mycobacterium tuberculosis.
    Bhaumik P; Kursula P; Ratas V; Conzelmann E; Hiltunen JK; Schmitz W; Wierenga RK
    Acta Crystallogr D Biol Crystallogr; 2003 Feb; 59(Pt 2):353-5. PubMed ID: 12554951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chiral inversion of 2-arylpropionyl-CoA esters by human α-methylacyl-CoA racemase 1A (P504S)--a potential mechanism for the anti-cancer effects of ibuprofen.
    Woodman TJ; Wood PJ; Thompson AS; Hutchings TJ; Steel GR; Jiao P; Threadgill MD; Lloyd MD
    Chem Commun (Camb); 2011 Jul; 47(26):7332-4. PubMed ID: 21614403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A computational study of the deacylation mechanism of human butyrylcholinesterase.
    Suárez D; Díaz N; Fontecilla-Camps J; Field MJ
    Biochemistry; 2006 Jun; 45(24):7529-43. PubMed ID: 16768449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unexpected stereoselective exchange of straight-chain fatty acyl-CoA alpha-protons by human alpha-methylacyl-CoA racemase 1A (P504S).
    Sattar FA; Darley DJ; Politano F; Woodman TJ; Threadgill MD; Lloyd MD
    Chem Commun (Camb); 2010 May; 46(19):3348-50. PubMed ID: 20442897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High resolution crystal structures of human cytosolic thiolase (CT): a comparison of the active sites of human CT, bacterial thiolase, and bacterial KAS I.
    Kursula P; Sikkilä H; Fukao T; Kondo N; Wierenga RK
    J Mol Biol; 2005 Mar; 347(1):189-201. PubMed ID: 15733928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ab initio QM/MM modelling of acetyl-CoA deprotonation in the enzyme citrate synthase.
    van der Kamp MW; Perruccio F; Mulholland AJ
    J Mol Graph Model; 2007 Oct; 26(3):676-90. PubMed ID: 17493853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Active site dynamics and combined quantum mechanics/molecular mechanics (QM/MM) modelling of a HIV-1 reverse transcriptase/DNA/dTTP complex.
    Rungrotmongkol T; Mulholland AJ; Hannongbua S
    J Mol Graph Model; 2007 Jul; 26(1):1-13. PubMed ID: 17046299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical study on the mechanism of the oxygen activation process in cysteine dioxygenase enzymes.
    Kumar D; Thiel W; de Visser SP
    J Am Chem Soc; 2011 Mar; 133(11):3869-82. PubMed ID: 21344861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid quantum mechanical/molecular mechanical investigation of the beta-1,4-galactosyltransferase-I mechanism.
    Krupicka M; Tvaroska I
    J Phys Chem B; 2009 Aug; 113(32):11314-9. PubMed ID: 19627105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acetyl-CoA enolization in citrate synthase: a quantum mechanical/molecular mechanical (QM/MM) study.
    Mulholland AJ; Richards WG
    Proteins; 1997 Jan; 27(1):9-25. PubMed ID: 9037708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peroxo-iron mediated deformylation in sterol 14alpha-demethylase catalysis.
    Sen K; Hackett JC
    J Am Chem Soc; 2010 Aug; 132(30):10293-305. PubMed ID: 20662512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular oxygen activation and proton transfer mechanisms in lanosterol 14alpha-demethylase catalysis.
    Sen K; Hackett JC
    J Phys Chem B; 2009 Jun; 113(23):8170-82. PubMed ID: 19438188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substrate polarization in enzyme catalysis: QM/MM analysis of the effect of oxaloacetate polarization on acetyl-CoA enolization in citrate synthase.
    van der Kamp MW; Perruccio F; Mulholland AJ
    Proteins; 2007 Nov; 69(3):521-35. PubMed ID: 17623847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new crystal form of MshB from Mycobacterium tuberculosis with glycerol and acetate in the active site suggests the catalytic mechanism.
    Broadley SG; Gumbart JC; Weber BW; Marakalala MJ; Steenkamp DJ; Sewell BT
    Acta Crystallogr D Biol Crystallogr; 2012 Nov; 68(Pt 11):1450-9. PubMed ID: 23090394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.