These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 22360760)

  • 1. Fluorescent in situ hybridization with arbitrarily amplified DNA fragments differentiates carrot (Daucus carota L.) chromosomes.
    Nowicka A; Grzebelus E; Grzebelus D
    Genome; 2012 Mar; 55(3):205-13. PubMed ID: 22360760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative FISH mapping of Daucus species (Apiaceae family).
    Iovene M; Cavagnaro PF; Senalik D; Buell CR; Jiang J; Simon PW
    Chromosome Res; 2011 May; 19(4):493-506. PubMed ID: 21547583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using carrot centromeric repeats to study karyotype relationships in the genus Daucus (Apiaceae).
    Kadluczka D; Grzebelus E
    BMC Genomics; 2021 Jul; 22(1):508. PubMed ID: 34225677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The distribution of repetitive DNAs along chromosomes in plants revealed by self-genomic in situ hybridization.
    She C; Liu J; Diao Y; Hu Z; Song Y
    J Genet Genomics; 2007 May; 34(5):437-48. PubMed ID: 17560530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A sugar beet (Beta vulgaris L.) reference FISH karyotype for chromosome and chromosome-arm identification, integration of genetic linkage groups and analysis of major repeat family distribution.
    Paesold S; Borchardt D; Schmidt T; Dechyeva D
    Plant J; 2012 Nov; 72(4):600-11. PubMed ID: 22775355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physical organization of repetitive sequences and chromosome diversity of barley revealed by fluorescence in situ hybridization (FISH).
    Zhang S; Zhu M; Shang Y; Wang J; Dawadundup ; Zhuang L; Zhang J; Chu C; Qi Z
    Genome; 2019 May; 62(5):329-339. PubMed ID: 30933665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of a deep-coverage carrot (Daucus carota L.) BAC library and initial analysis of BAC-end sequences.
    Cavagnaro PF; Chung SM; Szklarczyk M; Grzebelus D; Senalik D; Atkins AE; Simon PW
    Mol Genet Genomics; 2009 Mar; 281(3):273-88. PubMed ID: 19104839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mitochondrial plasmid and plasmid-like RNA and DNA polymerases encoded within the mitochondrial genome of carrot (Daucus carota L.).
    Robison MM; Wolyn DJ
    Curr Genet; 2005 Jan; 47(1):57-66. PubMed ID: 15549316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fine Mapping, Transcriptome Analysis, and Marker Development for
    Ellison S; Senalik D; Bostan H; Iorizzo M; Simon P
    G3 (Bethesda); 2017 Aug; 7(8):2665-2675. PubMed ID: 28663343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization, genomic organization and chromosomal distribution of Ty1-copia retrotransposons in species of Hypochaeris (Asteraceae).
    Ruas CF; Weiss-Schneeweiss H; Stuessy TF; Samuel MR; Pedrosa-Harand A; Tremetsberger K; Ruas PM; Schlüter PM; Ortiz Herrera MA; König C; Matzenbacher NI
    Gene; 2008 Apr; 412(1-2):39-49. PubMed ID: 18302977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-gene detection and karyotyping using small-target fluorescence in situ hybridization on maize somatic chromosomes.
    Lamb JC; Danilova T; Bauer MJ; Meyer JM; Holland JJ; Jensen MD; Birchler JA
    Genetics; 2007 Mar; 175(3):1047-58. PubMed ID: 17237520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic structure and domestication of carrot (Daucus carota subsp. sativus) (Apiaceae).
    Iorizzo M; Senalik DA; Ellison SL; Grzebelus D; Cavagnaro PF; Allender C; Brunet J; Spooner DM; Van Deynze A; Simon PW
    Am J Bot; 2013 May; 100(5):930-8. PubMed ID: 23594914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Major repeat components covering one-third of the ginseng (Panax ginseng C.A. Meyer) genome and evidence for allotetraploidy.
    Choi HI; Waminal NE; Park HM; Kim NH; Choi BS; Park M; Choi D; Lim YP; Kwon SJ; Park BS; Kim HH; Yang TJ
    Plant J; 2014 Mar; 77(6):906-16. PubMed ID: 24456463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A fluorescence in situ hybridization system for karyotyping soybean.
    Findley SD; Cannon S; Varala K; Du J; Ma J; Hudson ME; Birchler JA; Stacey G
    Genetics; 2010 Jul; 185(3):727-44. PubMed ID: 20421607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of repetitive DNA in cytogenetic studies of plant sex chromosomes.
    Kazama Y; Matsunaga S
    Cytogenet Genome Res; 2008; 120(3-4):247-54. PubMed ID: 18504354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carotenoid biosynthesis structural genes in carrot (Daucus carota): isolation, sequence-characterization, single nucleotide polymorphism (SNP) markers and genome mapping.
    Just BJ; Santos CA; Fonseca ME; Boiteux LS; Oloizia BB; Simon PW
    Theor Appl Genet; 2007 Feb; 114(4):693-704. PubMed ID: 17186217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diverse and mobile: eccDNA-based identification of carrot low-copy-number LTR retrotransposons active in callus cultures.
    Kwolek K; Kędzierska P; Hankiewicz M; Mirouze M; Panaud O; Grzebelus D; Macko-Podgórni A
    Plant J; 2022 Jun; 110(6):1811-1828. PubMed ID: 35426957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytological characterization of sunflower by in situ hybridization using homologous rDNA sequences and a BAC clone containing highly represented repetitive retrotransposon-like sequences.
    Talia P; Greizerstein E; Quijano CD; Peluffo L; Fernández L; Fernández P; Hopp HE; Paniego N; Heinz RA; Poggio L
    Genome; 2010 Mar; 53(3):172-9. PubMed ID: 20237595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of DOP-PCR for amplification and labeling of BAC DNA for FISH.
    Darouich S; Popovici C; Missirian C; Moncla A
    Biotech Histochem; 2012 Feb; 87(2):117-21. PubMed ID: 21314248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. C-Banding/DAPI and in situ hybridization reflect karyotype structure and sex chromosome differentiation in Humulus japonicus Siebold & Zucc.
    Grabowska-Joachimiak A; Mosiolek M; Lech A; Góralski G
    Cytogenet Genome Res; 2011; 132(3):203-11. PubMed ID: 21079383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.