These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 22360992)

  • 1. Higher-order chromatin structure: bridging physics and biology.
    Fudenberg G; Mirny LA
    Curr Opin Genet Dev; 2012 Apr; 22(2):115-24. PubMed ID: 22360992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation of different three-dimensional polymer models of interphase chromosomes compared to experiments-an evaluation and review framework of the 3D genome organization.
    Knoch TA
    Semin Cell Dev Biol; 2019 Jun; 90():19-42. PubMed ID: 30125668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recovering ensembles of chromatin conformations from contact probabilities.
    Meluzzi D; Arya G
    Nucleic Acids Res; 2013 Jan; 41(1):63-75. PubMed ID: 23143266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromatin folding--from biology to polymer models and back.
    Tark-Dame M; van Driel R; Heermann DW
    J Cell Sci; 2011 Mar; 124(Pt 6):839-45. PubMed ID: 21378305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromatin Conformation Capture-Based Analysis of Nuclear Architecture.
    Grob S; Grossniklaus U
    Methods Mol Biol; 2017; 1456():15-32. PubMed ID: 27770354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Physical Behavior of Interphase Chromosomes: Polymer Theory and Coarse-Grain Computer Simulations.
    Rosa A
    Methods Mol Biol; 2022; 2301():235-258. PubMed ID: 34415539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulating Dynamic Chromosome Compaction: Methods for Bridging In Silico to In Vivo.
    He Y; Adalsteinsson D; Walker B; Lawrimore J; Forest MG; Bloom K
    Methods Mol Biol; 2022; 2415():211-220. PubMed ID: 34972957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatially confined folding of chromatin in the interphase nucleus.
    Mateos-Langerak J; Bohn M; de Leeuw W; Giromus O; Manders EM; Verschure PJ; Indemans MH; Gierman HJ; Heermann DW; van Driel R; Goetze S
    Proc Natl Acad Sci U S A; 2009 Mar; 106(10):3812-7. PubMed ID: 19234129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of loops on the order of eukaryotes and prokaryotes.
    Hofmann A; Heermann DW
    FEBS Lett; 2015 Oct; 589(20 Pt A):2958-65. PubMed ID: 25912650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A polymer model explains the complexity of large-scale chromatin folding.
    Barbieri M; Fraser J; Lavitas LM; Chotalia M; Dostie J; Pombo A; Nicodemi M
    Nucleus; 2013; 4(4):267-73. PubMed ID: 23823730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bridging the resolution gap in structural modeling of 3D genome organization.
    Marti-Renom MA; Mirny LA
    PLoS Comput Biol; 2011 Jul; 7(7):e1002125. PubMed ID: 21779160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular Dynamics simulations of the Strings and Binders Switch model of chromatin.
    Annunziatella C; Chiariello AM; Esposito A; Bianco S; Fiorillo L; Nicodemi M
    Methods; 2018 Jun; 142():81-88. PubMed ID: 29522804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Models that include supercoiling of topological domains reproduce several known features of interphase chromosomes.
    Benedetti F; Dorier J; Burnier Y; Stasiak A
    Nucleic Acids Res; 2014 Mar; 42(5):2848-55. PubMed ID: 24366878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diffusion-driven looping provides a consistent framework for chromatin organization.
    Bohn M; Heermann DW
    PLoS One; 2010 Aug; 5(8):e12218. PubMed ID: 20811620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulated contact frequencies at gene-rich loci support a statistical helix model for mammalian chromatin organization.
    Court F; Miro J; Braem C; Lelay-Taha MN; Brisebarre A; Atger F; Gostan T; Weber M; Cathala G; Forné T
    Genome Biol; 2011; 12(5):R42. PubMed ID: 21569291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Models of polymer physics for the architecture of the cell nucleus.
    Esposito A; Annunziatella C; Bianco S; Chiariello AM; Fiorillo L; Nicodemi M
    Wiley Interdiscip Rev Syst Biol Med; 2019 Jul; 11(4):e1444. PubMed ID: 30566285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome organization via loop extrusion, insights from polymer physics models.
    Ghosh SK; Jost D
    Brief Funct Genomics; 2020 Mar; 19(2):119-127. PubMed ID: 31711163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polymer Physics of the Large-Scale Structure of Chromatin.
    Bianco S; Chiariello AM; Annunziatella C; Esposito A; Nicodemi M
    Methods Mol Biol; 2016; 1480():201-6. PubMed ID: 27659986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physics-Based Polymer Models to Probe Chromosome Structure in Single Molecules.
    Conte M; Chiariello AM; Bianco S; Esposito A; Abraham A; Nicodemi M
    Methods Mol Biol; 2023; 2655():57-66. PubMed ID: 37212988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A polymer model for the structural organization of chromatin loops and minibands in interphase chromosomes.
    Ostashevsky J
    Mol Biol Cell; 1998 Nov; 9(11):3031-40. PubMed ID: 9802894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.