These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 22361333)

  • 1. Nitric oxide synthase uncoupling: a therapeutic target in cardiovascular diseases.
    Roe ND; Ren J
    Vascul Pharmacol; 2012; 57(5-6):168-72. PubMed ID: 22361333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Therapeutic potential of tetrahydrobiopterin for treating vascular and cardiac disease.
    Moens AL; Kass DA
    J Cardiovasc Pharmacol; 2007 Sep; 50(3):238-46. PubMed ID: 17878750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitric oxide synthase inhibition and oxidative stress in cardiovascular diseases: possible therapeutic targets?
    Rochette L; Lorin J; Zeller M; Guilland JC; Lorgis L; Cottin Y; Vergely C
    Pharmacol Ther; 2013 Dec; 140(3):239-57. PubMed ID: 23859953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tetrahydrobiopterin and cardiovascular disease.
    Moens AL; Kass DA
    Arterioscler Thromb Vasc Biol; 2006 Nov; 26(11):2439-44. PubMed ID: 16946131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arginase as a potential target in the treatment of cardiovascular disease: reversal of arginine steal?
    Pernow J; Jung C
    Cardiovasc Res; 2013 Jun; 98(3):334-43. PubMed ID: 23417041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitric oxide dynamics and endothelial dysfunction in type II model of genetic diabetes.
    Bitar MS; Wahid S; Mustafa S; Al-Saleh E; Dhaunsi GS; Al-Mulla F
    Eur J Pharmacol; 2005 Mar; 511(1):53-64. PubMed ID: 15777779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recoupling the cardiac nitric oxide synthases: tetrahydrobiopterin synthesis and recycling.
    Alkaitis MS; Crabtree MJ
    Curr Heart Fail Rep; 2012 Sep; 9(3):200-10. PubMed ID: 22711313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ascorbic acid and N-acetyl cysteine prevent uncoupling of nitric oxide synthase and increase tolerance to ischemia/reperfusion injury in diabetic rat heart.
    Okazaki T; Otani H; Shimazu T; Yoshioka K; Fujita M; Iwasaka T
    Free Radic Res; 2011 Oct; 45(10):1173-83. PubMed ID: 21756052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arginine and nitric oxide synthase: regulatory mechanisms and cardiovascular aspects.
    Lorin J; Zeller M; Guilland JC; Cottin Y; Vergely C; Rochette L
    Mol Nutr Food Res; 2014 Jan; 58(1):101-16. PubMed ID: 23740826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversal of inducible nitric oxide synthase uncoupling unmasks tolerance to ischemia/reperfusion injury in the diabetic rat heart.
    Okazaki T; Otani H; Shimazu T; Yoshioka K; Fujita M; Katano T; Ito S; Iwasaka T
    J Mol Cell Cardiol; 2011 Mar; 50(3):534-44. PubMed ID: 21182845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitric oxide in the pathogenesis of vascular disease.
    Li H; Förstermann U
    J Pathol; 2000 Feb; 190(3):244-54. PubMed ID: 10685059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitric oxide and the endothelium: history and impact on cardiovascular disease.
    Yetik-Anacak G; Catravas JD
    Vascul Pharmacol; 2006 Nov; 45(5):268-76. PubMed ID: 17052961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased superoxide production in hypertensive patients with diabetes mellitus: role of nitric oxide synthase.
    Dixon LJ; Hughes SM; Rooney K; Madden A; Devine A; Leahey W; Henry W; Johnston GD; McVeigh GE
    Am J Hypertens; 2005 Jun; 18(6):839-43. PubMed ID: 15925745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maintenance of cellular tetrahydrobiopterin homeostasis.
    Kim HL; Park YS
    BMB Rep; 2010 Sep; 43(9):584-92. PubMed ID: 20846489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NAD(P)H oxidase and uncoupled nitric oxide synthase are major sources of glomerular superoxide in rats with experimental diabetic nephropathy.
    Satoh M; Fujimoto S; Haruna Y; Arakawa S; Horike H; Komai N; Sasaki T; Tsujioka K; Makino H; Kashihara N
    Am J Physiol Renal Physiol; 2005 Jun; 288(6):F1144-52. PubMed ID: 15687247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tetrahydrobiopterin: pleiotropic roles in cardiovascular pathophysiology.
    Cunnington C; Channon KM
    Heart; 2010 Dec; 96(23):1872-7. PubMed ID: 20837663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitric oxide synthase partial uncoupling as a key switching mechanism for the NO/ONOO- cycle.
    Pall ML
    Med Hypotheses; 2007; 69(4):821-5. PubMed ID: 17448611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting endothelial and myocardial dysfunction with tetrahydrobiopterin.
    Moens AL; Kietadisorn R; Lin JY; Kass D
    J Mol Cell Cardiol; 2011 Oct; 51(4):559-63. PubMed ID: 21458460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Caloric restriction improves endothelial dysfunction during vascular aging: Effects on nitric oxide synthase isoforms and oxidative stress in rat aorta.
    Zanetti M; Gortan Cappellari G; Burekovic I; Barazzoni R; Stebel M; Guarnieri G
    Exp Gerontol; 2010 Nov; 45(11):848-55. PubMed ID: 20637278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tetrahydrobiopterin regulates superoxide and nitric oxide generation by recombinant endothelial nitric oxide synthase.
    Wever RM; van Dam T; van Rijn HJ; de Groot F; Rabelink TJ
    Biochem Biophys Res Commun; 1997 Aug; 237(2):340-4. PubMed ID: 9268712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.