These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 22361490)

  • 1. High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications.
    Xiao L; Cao Y; Xiao J; Wang W; Kovarik L; Nie Z; Liu J
    Chem Commun (Camb); 2012 Apr; 48(27):3321-3. PubMed ID: 22361490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries.
    Qian J; Chen Y; Wu L; Cao Y; Ai X; Yang H
    Chem Commun (Camb); 2012 Jul; 48(56):7070-2. PubMed ID: 22684188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Double-shelled nanocapsules of V2O5-based composites as high-performance anode and cathode materials for Li ion batteries.
    Liu J; Xia H; Xue D; Lu L
    J Am Chem Soc; 2009 Sep; 131(34):12086-7. PubMed ID: 19705911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduced Graphene Oxide/Tin-Antimony Nanocomposites as Anode Materials for Advanced Sodium-Ion Batteries.
    Ji L; Zhou W; Chabot V; Yu A; Xiao X
    ACS Appl Mater Interfaces; 2015 Nov; 7(44):24895-901. PubMed ID: 26496231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reversible conversion-alloying of Sb2O3 as a high-capacity, high-rate, and durable anode for sodium ion batteries.
    Hu M; Jiang Y; Sun W; Wang H; Jin C; Yan M
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):19449-55. PubMed ID: 25329758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Octahedral tin dioxide nanocrystals as high capacity anode materials for Na-ion batteries.
    Su D; Wang C; Ahn H; Wang G
    Phys Chem Chem Phys; 2013 Aug; 15(30):12543-50. PubMed ID: 23793542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon-enhanced centrifugally-spun SnSb/carbon microfiber composite as advanced anode material for sodium-ion battery.
    Jia H; Dirican M; Aksu C; Sun N; Chen C; Zhu J; Zhu P; Yan C; Li Y; Ge Y; Guo J; Zhang X
    J Colloid Interface Sci; 2019 Feb; 536():655-663. PubMed ID: 30396121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. WS₂@graphene nanocomposites as anode materials for Na-ion batteries with enhanced electrochemical performances.
    Su D; Dou S; Wang G
    Chem Commun (Camb); 2014 Apr; 50(32):4192-5. PubMed ID: 24622992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Na(+) intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling.
    Chen C; Wen Y; Hu X; Ji X; Yan M; Mai L; Hu P; Shan B; Huang Y
    Nat Commun; 2015 Apr; 6():6929. PubMed ID: 25906991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monodisperse SnSb nanocrystals for Li-ion and Na-ion battery anodes: synergy and dissonance between Sn and Sb.
    He M; Walter M; Kravchyk KV; Erni R; Widmer R; Kovalenko MV
    Nanoscale; 2015 Jan; 7(2):455-9. PubMed ID: 25429402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reversible 3-Li storage reactions of amorphous phosphorus as high capacity and cycling-stable anodes for Li-ion batteries.
    Qian J; Qiao D; Ai X; Cao Y; Yang H
    Chem Commun (Camb); 2012 Sep; 48(71):8931-3. PubMed ID: 22850700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Perylene Diimide Crystal with High Capacity and Stable Cyclability for Na-Ion Batteries.
    Deng W; Shen Y; Qian J; Cao Y; Yang H
    ACS Appl Mater Interfaces; 2015 Sep; 7(38):21095-9. PubMed ID: 26357982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tandem structure of porous silicon film on single-walled carbon nanotube macrofilms for lithium-ion battery applications.
    Rong J; Masarapu C; Ni J; Zhang Z; Wei B
    ACS Nano; 2010 Aug; 4(8):4683-90. PubMed ID: 20731447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nano-graphite functionalized mesocellular carbon foam with enhanced intra-penetrating electrical percolation networks for high performance electrochemical energy storage electrode materials.
    Jo C; An S; Kim Y; Shim J; Yoon S; Lee J
    Phys Chem Chem Phys; 2012 Apr; 14(16):5695-704. PubMed ID: 22434145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sodium-ion battery based on an electrochemically converted NaFePO4 cathode and nanostructured tin-carbon anode.
    Hasa I; Hassoun J; Sun YK; Scrosati B
    Chemphyschem; 2014 Jul; 15(10):2152-5. PubMed ID: 24737749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Porous structured SnSb/C nanocomposites for Li-ion battery anodes.
    Park CM; Jeon KJ
    Chem Commun (Camb); 2011 Feb; 47(7):2122-4. PubMed ID: 21180761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High rate reversibility anode materials of lithium batteries from vapor-grown carbon nanofibers.
    Subramanian V; Zhu H; Wei B
    J Phys Chem B; 2006 Apr; 110(14):7178-83. PubMed ID: 16599483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly conductive, mechanically robust, and electrochemically inactive TiC/C nanofiber scaffold for high-performance silicon anode batteries.
    Yao Y; Huo K; Hu L; Liu N; Cha JJ; McDowell MT; Chu PK; Cui Y
    ACS Nano; 2011 Oct; 5(10):8346-51. PubMed ID: 21974912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical properties of ultrafine Sb nanocrystals embedded in carbon microspheres for use as Na-ion battery anode materials.
    Ko YN; Kang YC
    Chem Commun (Camb); 2014 Oct; 50(82):12322-4. PubMed ID: 25183286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.