These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 22361490)

  • 21. Hydrothermal synthesis of Zn2SnO4 as anode materials for Li-ion battery.
    Rong A; Gao XP; Li GR; Yan TY; Zhu HY; Qu JQ; Song DY
    J Phys Chem B; 2006 Aug; 110(30):14754-60. PubMed ID: 16869583
    [TBL] [Abstract][Full Text] [Related]  

  • 22. One-pot resource-efficient synthesis of SnSb powders for composite anodes in sodium-ion batteries.
    Tan D; Chen P; Wang G; Chen G; Pietsch T; Brunner E; Doert T; Ruck M
    RSC Adv; 2020 Jun; 10(37):22250-22256. PubMed ID: 35516593
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exploring the sodium ion storage mechanism of gallium sulfide (Ga
    Wang P; Liu M; Mo F; Long Z; Fang F; Sun D; Zhou YN; Song Y
    Nanoscale; 2019 Feb; 11(7):3208-3215. PubMed ID: 30702117
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A polyimide anode with high capacity and superior cyclability for aqueous Na-ion batteries.
    Deng W; Shen Y; Qian J; Yang H
    Chem Commun (Camb); 2015 Mar; 51(24):5097-9. PubMed ID: 25712023
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Probing the Critical Role of Sn Content in SnSb@C Nanofiber Anode on Li Storage Mechanism and Battery Performance.
    Das S; Guru Row TN; Bhattacharyya AJ
    ACS Omega; 2017 Dec; 2(12):9250-9260. PubMed ID: 31457438
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Wet chemical synthesis of Cu/TiO2 nanocomposites with integrated nano-current-collectors as high-rate anode materials in lithium-ion batteries.
    Cao FF; Xin S; Guo YG; Wan LJ
    Phys Chem Chem Phys; 2011 Feb; 13(6):2014-20. PubMed ID: 21203647
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improved lithium cyclability and storage in mesoporous SnO2 electronically wired with very low concentrations (≤1 %) of reduced graphene oxide.
    Shiva K; Rajendra HB; Subrahmanyam KS; Bhattacharyya AJ; Rao CN
    Chemistry; 2012 Apr; 18(15):4489-94. PubMed ID: 22415964
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries.
    Wu ZS; Ren W; Xu L; Li F; Cheng HM
    ACS Nano; 2011 Jul; 5(7):5463-71. PubMed ID: 21696205
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interconnected MoO2 nanocrystals with carbon nanocoating as high-capacity anode materials for lithium-ion batteries.
    Zhou L; Wu HB; Wang Z; Lou XW
    ACS Appl Mater Interfaces; 2011 Dec; 3(12):4853-7. PubMed ID: 22077330
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Self-supported SnO2 nanowire electrodes for high-power lithium-ion batteries.
    Ko YD; Kang JG; Park JG; Lee S; Kim DW
    Nanotechnology; 2009 Nov; 20(45):455701. PubMed ID: 19822930
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Framework structured Na4Mn4Ti5O18 as an electrode for Na-ion storage hybrid devices.
    Jayakumar M; Hemalatha K; Ramesha K; Prakash AS
    Phys Chem Chem Phys; 2015 Aug; 17(32):20733-40. PubMed ID: 26205120
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An advanced lithium ion battery based on high performance electrode materials.
    Hassoun J; Lee KS; Sun YK; Scrosati B
    J Am Chem Soc; 2011 Mar; 133(9):3139-43. PubMed ID: 21291261
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An advanced sodium-ion rechargeable battery based on a tin-carbon anode and a layered oxide framework cathode.
    Oh SM; Myung ST; Jang MW; Scrosati B; Hassoun J; Sun YK
    Phys Chem Chem Phys; 2013 Mar; 15(11):3827-33. PubMed ID: 23396415
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microporous carbon coated silicon core/shell nanocomposite via in situ polymerization for advanced Li-ion battery anode material.
    Gao P; Fu J; Yang J; Lv R; Wang J; Nuli Y; Tang X
    Phys Chem Chem Phys; 2009 Dec; 11(47):11101-5. PubMed ID: 20024376
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A major constituent of brown algae for use in high-capacity Li-ion batteries.
    Kovalenko I; Zdyrko B; Magasinski A; Hertzberg B; Milicev Z; Burtovyy R; Luzinov I; Yushin G
    Science; 2011 Oct; 334(6052):75-9. PubMed ID: 21903777
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prussian blue: a new framework of electrode materials for sodium batteries.
    Lu Y; Wang L; Cheng J; Goodenough JB
    Chem Commun (Camb); 2012 Jul; 48(52):6544-6. PubMed ID: 22622269
    [TBL] [Abstract][Full Text] [Related]  

  • 37. TiO2(B) nanoribbons as negative electrode material for lithium ion batteries with high rate performance.
    Beuvier T; Richard-Plouet M; Mancini-Le Granvalet M; Brousse T; Crosnier O; Brohan L
    Inorg Chem; 2010 Sep; 49(18):8457-64. PubMed ID: 20722375
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries.
    Poizot P; Laruelle S; Grugeon S; Dupont L; Tarascon JM
    Nature; 2000 Sep; 407(6803):496-9. PubMed ID: 11028997
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nanostructured hybrid silicon/carbon nanotube heterostructures: reversible high-capacity lithium-ion anodes.
    Wang W; Kumta PN
    ACS Nano; 2010 Apr; 4(4):2233-41. PubMed ID: 20364846
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A high performance carrier for SnO2 nanoparticles used in lithium ion battery.
    Li J; Zhao Y; Wang N; Guan L
    Chem Commun (Camb); 2011 May; 47(18):5238-40. PubMed ID: 21445391
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.