These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 22361490)
41. Electrodeposition of pure phase SnSb exhibiting high stability as a sodium-ion battery anode. Ma J; Prieto AL Chem Commun (Camb); 2019 Jun; 55(48):6938-6941. PubMed ID: 31140478 [TBL] [Abstract][Full Text] [Related]
42. Rechargeable Ni-Li battery integrated aqueous/nonaqueous system. Li H; Wang Y; Na H; Liu H; Zhou H J Am Chem Soc; 2009 Oct; 131(42):15098-9. PubMed ID: 19803514 [TBL] [Abstract][Full Text] [Related]
43. Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. Wang H; Cui LF; Yang Y; Sanchez Casalongue H; Robinson JT; Liang Y; Cui Y; Dai H J Am Chem Soc; 2010 Oct; 132(40):13978-80. PubMed ID: 20853844 [TBL] [Abstract][Full Text] [Related]
44. Enhancing Na-Ion Storage at Subzero Temperature via Interlayer Confinement of Sn Que LF; Yu FD; Xia Y; Deng L; Goh K; Liu C; Jiang YS; Sui XL; Wang ZB ACS Nano; 2020 Oct; 14(10):13765-13774. PubMed ID: 33025784 [TBL] [Abstract][Full Text] [Related]
45. Si/Ge double-layered nanotube array as a lithium ion battery anode. Song T; Cheng H; Choi H; Lee JH; Han H; Lee DH; Yoo DS; Kwon MS; Choi JM; Doo SG; Chang H; Xiao J; Huang Y; Park WI; Chung YC; Kim H; Rogers JA; Paik U ACS Nano; 2012 Jan; 6(1):303-9. PubMed ID: 22142021 [TBL] [Abstract][Full Text] [Related]
46. High capacity and excellent stability of lithium ion battery anode using interface-controlled binder-free multiwall carbon nanotubes grown on copper. Lahiri I; Oh SW; Hwang JY; Cho S; Sun YK; Banerjee R; Choi W ACS Nano; 2010 Jun; 4(6):3440-6. PubMed ID: 20441185 [TBL] [Abstract][Full Text] [Related]
47. High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Taberna PL; Mitra S; Poizot P; Simon P; Tarascon JM Nat Mater; 2006 Jul; 5(7):567-73. PubMed ID: 16783360 [TBL] [Abstract][Full Text] [Related]
48. Development of a high-performance anode for lithium ion batteries using novel ordered mesoporous tungsten oxide materials with high electrical conductivity. Yoon S; Jo C; Noh SY; Lee CW; Song JH; Lee J Phys Chem Chem Phys; 2011 Jun; 13(23):11060-6. PubMed ID: 21552641 [TBL] [Abstract][Full Text] [Related]
49. Enhanced electrochemical properties of LiFePO4 by Mo-substitution and graphitic carbon-coating via a facile and fast microwave-assisted solid-state reaction. Li D; Huang Y; Sharma N; Chen Z; Jia D; Guo Z Phys Chem Chem Phys; 2012 Mar; 14(10):3634-9. PubMed ID: 22311165 [TBL] [Abstract][Full Text] [Related]
50. Sn@CNT nanostructures rooted in graphene with high and fast Li-storage capacities. Zou Y; Wang Y ACS Nano; 2011 Oct; 5(10):8108-14. PubMed ID: 21939228 [TBL] [Abstract][Full Text] [Related]
51. A hierarchical architecture S/MWCNT nanomicrosphere with large pores for lithium sulfur batteries. Chen JJ; Zhang Q; Shi YN; Qin LL; Cao Y; Zheng MS; Dong QF Phys Chem Chem Phys; 2012 Apr; 14(16):5376-82. PubMed ID: 22382743 [TBL] [Abstract][Full Text] [Related]
52. Facile scalable synthesis of magnetite nanocrystals embedded in carbon matrix as superior anode materials for lithium-ion batteries. Piao Y; Kim HS; Sung YE; Hyeon T Chem Commun (Camb); 2010 Jan; 46(1):118-20. PubMed ID: 20024312 [TBL] [Abstract][Full Text] [Related]
53. Facile synthesis of metal oxide/reduced graphene oxide hybrids with high lithium storage capacity and stable cyclability. Zhu J; Zhu T; Zhou X; Zhang Y; Lou XW; Chen X; Zhang H; Hng HH; Yan Q Nanoscale; 2011 Mar; 3(3):1084-9. PubMed ID: 21180729 [TBL] [Abstract][Full Text] [Related]
54. Graphene anchored with co(3)o(4) nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. Wu ZS; Ren W; Wen L; Gao L; Zhao J; Chen Z; Zhou G; Li F; Cheng HM ACS Nano; 2010 Jun; 4(6):3187-94. PubMed ID: 20455594 [TBL] [Abstract][Full Text] [Related]
55. SnO2/WO3 core-shell nanorods and their high reversible capacity as lithium-ion battery anodes. Xue XY; He B; Yuan S; Xing LL; Chen ZH; Ma CH Nanotechnology; 2011 Sep; 22(39):395702. PubMed ID: 21891841 [TBL] [Abstract][Full Text] [Related]
56. Sandwich-type functionalized graphene sheet-sulfur nanocomposite for rechargeable lithium batteries. Cao Y; Li X; Aksay IA; Lemmon J; Nie Z; Yang Z; Liu J Phys Chem Chem Phys; 2011 May; 13(17):7660-5. PubMed ID: 21448499 [TBL] [Abstract][Full Text] [Related]
57. Excellent performance in lithium-ion battery anodes: rational synthesis of Co(CO3)0.5(OH)0.11H2O nanobelt array and its conversion into mesoporous and single-crystal Co3O4. Wang Y; Xia H; Lu L; Lin J ACS Nano; 2010 Mar; 4(3):1425-32. PubMed ID: 20146455 [TBL] [Abstract][Full Text] [Related]
58. Designed functional systems from peapod-like Co@carbon to Co3O4@carbon nanocomposites. Wang Y; Zhang HJ; Lu L; Stubbs LP; Wong CC; Lin J ACS Nano; 2010 Aug; 4(8):4753-61. PubMed ID: 20666372 [TBL] [Abstract][Full Text] [Related]
59. Tin nanoparticle thin film electrodes fabricated by the vacuum filtration method for enhanced battery performance. Lee JH; Kong BS; Baek YK; Yang SB; Jung HT Nanotechnology; 2009 Jun; 20(23):235203. PubMed ID: 19448286 [TBL] [Abstract][Full Text] [Related]
60. Silicon nanoparticles-graphene paper composites for Li ion battery anodes. Lee JK; Smith KB; Hayner CM; Kung HH Chem Commun (Camb); 2010 Mar; 46(12):2025-7. PubMed ID: 20221480 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]