These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 22361882)

  • 1. Geranylgeraniol oxidase activity involved in oxidative formation of geranylgeranoic acid in human hepatoma cells.
    Mitake M; Shidoji Y
    Biomed Res; 2012 Feb; 33(1):15-24. PubMed ID: 22361882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hepatic monoamine oxidase B is involved in endogenous geranylgeranoic acid synthesis in mammalian liver cells.
    Tabata Y; Shidoji Y
    J Lipid Res; 2020 May; 61(5):778-789. PubMed ID: 32094232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hepatic CYP3A4 Enzyme Compensatively Maintains Endogenous Geranylgeranoic Acid Levels in
    Tabata Y; Shidoji Y
    Metabolites; 2022 Feb; 12(2):. PubMed ID: 35208214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polished rice as natural sources of cancer-preventing geranylgeranoic acid.
    Muraguchi T; Okamoto K; Mitake M; Ogawa H; Shidoji Y
    J Clin Biochem Nutr; 2011 Jul; 49(1):8-15. PubMed ID: 21765600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Natural occurrence of cancer-preventive geranylgeranoic acid in medicinal herbs.
    Shidoji Y; Ogawa H
    J Lipid Res; 2004 Jun; 45(6):1092-103. PubMed ID: 15060084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geranylgeranoic acid, a bioactive and endogenous fatty acid in mammals: a review.
    Shidoji Y
    J Lipid Res; 2023 Jul; 64(7):100396. PubMed ID: 37247782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roles of rat and human aldo-keto reductases in metabolism of farnesol and geranylgeraniol.
    Endo S; Matsunaga T; Ohta C; Soda M; Kanamori A; Kitade Y; Ohno S; Tajima K; El-Kabbani O; Hara A
    Chem Biol Interact; 2011 May; 191(1-3):261-8. PubMed ID: 21187079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Independent pathways in the modulation of osteoclastic resorption by intermediates of the mevalonate biosynthetic pathway: the role of the retinoic acid receptor.
    van Beek E; Löwik C; Karperien M; Papapoulos S
    Bone; 2006 Feb; 38(2):167-71. PubMed ID: 16165408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Geranylgeraniol, an intermediate product in mevalonate pathway, induces apoptotic cell death in human hepatoma cells: death receptor-independent activation of caspase-8 with down-regulation of Bcl-xL expression.
    Takeda Y; Nakao K; Nakata K; Kawakami A; Ida H; Ichikawa T; Shigeno M; Kajiya Y; Hamasaki K; Kato Y; Eguchi K
    Jpn J Cancer Res; 2001 Sep; 92(9):918-25. PubMed ID: 11572758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unequivocal evidence for endogenous geranylgeranoic acid biosynthesized from mevalonate in mammalian cells.
    Shidoji Y; Tabata Y
    J Lipid Res; 2019 Mar; 60(3):579-593. PubMed ID: 30622150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid downregulation of cyclin D1 induced by geranylgeranoic acid in human hepatoma cells.
    Shimonishi S; Muraguchi T; Mitake M; Sakane C; Okamoto K; Shidoji Y
    Nutr Cancer; 2012 Apr; 64(3):473-80. PubMed ID: 22369110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Age-Dependent Decrease in Hepatic Geranylgeranoic Acid Content in C3H/HeN Mice and Its Oral Supplementation Prevents Spontaneous Hepatoma.
    Tabata Y; Omori M; Shidoji Y
    Metabolites; 2021 Sep; 11(9):. PubMed ID: 34564450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Induction of an incomplete autophagic response by cancer-preventive geranylgeranoic acid (GGA) in a human hepatoma-derived cell line.
    Okamoto K; Sakimoto Y; Imai K; Senoo H; Shidoji Y
    Biochem J; 2011 Nov; 440(1):63-71. PubMed ID: 21787360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of (R)-2,3-dihydrogeranylgeranoic acid from geranylgeraniol in rat thymocytes.
    Kodaira Y; Usui K; Kon I; Sagami H
    J Biochem; 2002 Aug; 132(2):327-34. PubMed ID: 12153732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The metabolism of tyramine by monoamine oxidase A/B causes oxidative damage to mitochondrial DNA.
    Hauptmann N; Grimsby J; Shih JC; Cadenas E
    Arch Biochem Biophys; 1996 Nov; 335(2):295-304. PubMed ID: 8914926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increase in plasma concentrations of geranylgeranoic Acid after turmeric tablet intake by healthy volunteers.
    Mitake M; Ogawa H; Uebaba K; Shidoji Y
    J Clin Biochem Nutr; 2010 May; 46(3):252-8. PubMed ID: 20490321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diverse Action of Selected Statins on Skeletal Muscle Cells-An Attempt to Explain the Protective Effect of Geranylgeraniol (GGOH) in Statin-Associated Myopathy (SAM).
    Jaśkiewicz A; Pająk B; Łabieniec-Watała M; Palma C; Orzechowski A
    J Clin Med; 2019 May; 8(5):. PubMed ID: 31100888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of the neurotransmitter glycine from the anticonvulsant milacemide is mediated by brain monoamine oxidase B.
    Janssens de Varebeke P; Cavalier R; David-Remacle M; Youdim MB
    J Neurochem; 1988 Apr; 50(4):1011-6. PubMed ID: 3346666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for the localization of hydrogen peroxide-stimulated cyclooxygenase activity in rat brain mitochondria: a possible coupling with monoamine oxidase.
    Seregi A; Serfözö P; Mergl Z
    J Neurochem; 1983 Feb; 40(2):407-13. PubMed ID: 6401800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Species-dependent differences in monoamine oxidase A and B-catalyzed oxidation of various C4 substituted 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridinyl derivatives.
    Inoue H; Castagnoli K; Van Der Schyf C; Mabic S; Igarashi K; Castagnoli N
    J Pharmacol Exp Ther; 1999 Nov; 291(2):856-64. PubMed ID: 10525109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.